Format

Send to

Choose Destination
Sci Rep. 2017 Jan 31;7:41569. doi: 10.1038/srep41569.

Identifying the Metabolic Differences of a Fast-Growth Phenotype in Synechococcus UTEX 2973.

Author information

1
Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA.
2
Department of Biology, Washington University, St. Louis, Missouri, USA.
3
Department of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, Missouri, USA.

Abstract

The photosynthetic capabilities of cyanobacteria make them interesting candidates for industrial bioproduction. One obstacle to large-scale implementation of cyanobacteria is their limited growth rates as compared to industrial mainstays. Synechococcus UTEX 2973, a strain closely related to Synechococcus PCC 7942, was recently identified as having the fastest measured growth rate among cyanobacteria. To facilitate the development of 2973 as a model organism we developed in this study the genome-scale metabolic model iSyu683. Experimental data were used to define CO2 uptake rates as well as the biomass compositions for each strain. The inclusion of constraints based on experimental measurements of CO2 uptake resulted in a ratio of the growth rates of Synechococcus 2973 to Synechococcus 7942 of 2.03, which nearly recapitulates the in vivo growth rate ratio of 2.13. This identified the difference in carbon uptake rate as the main factor contributing to the divergent growth rates. Additionally four SNPs were identified as possible contributors to modified kinetic parameters of metabolic enzymes and candidates for further study. Comparisons against more established cyanobacterial strains identified a number of differences between the strains along with a correlation between the number of cytochrome c oxidase operons and heterotrophic or diazotrophic capabilities.

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center