Format

Send to

Choose Destination
Biomacromolecules. 2017 Mar 13;18(3):835-845. doi: 10.1021/acs.biomac.6b01713. Epub 2017 Feb 10.

Conformational Stability and Interplay of Helical N- and C-Terminal Domains with Implications on Major Ampullate Spidroin Assembly.

Author information

1
Lehrstuhl Biomaterialien, ‡Forschungszentrum für Bio-Makromoleküle (BIOmac), Bayrisches Geoinstitut, ∥Bayreuther Materialzentrum (BayMat), Fakultät für Ingenieurswissenschaften, #Bayrisches Polymerinstitut (BPI), Universität Bayreuth, Universität Bayreuth , Universitätsstr. 30, 95440 Bayreuth, Germany.
2
Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), ⊥Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth , Naturwissenschaften I, 95440 Bayreuth, Germany.

Abstract

Major ampullate spidroin (MaSp) assembly starts in the abdomen of the spider, where spidroins are stored as a liquid dope at a high concentration. The dope is squeezed into the spinning duct, and assembly is finished upon drawing of fibers. Unwanted aggregation of the spidroin solution in the gland is suppressed by prestructuring of the spidroins in micelle-like assemblies, with their hydrophobic stretches being hidden from the solvent and the hydrophilic nonrepetitive amino (NRN) and carboxy (NRC) terminal domains being exposed on the micelle surface. Conversion of the fluid dope into a solid fiber is induced within the spinning duct by acidification and ion exchange (sodium chloride against potassium phosphate), with the impact on the structure of the NRN and NRC domains acting as a regulatory switch for fiber assembly. While NRN dimerizes pH-dependently in an antiparallel fashion (i.e. quaternary structural changes), the tertiary structure of dimeric NRC is changed by shear stress and a drop in pH, inducing the alignment of the intrinsically unstructured core domains accompanied by β-sheet formation of motifs of the core domain. Here, the conformational stability of NRN1 and NRC1 of Latrodectus hesperus MaSp1 were studied using independent techniques such as circular dichroism, fluorescence and absorbance spectroscopy, and scanning electron, transmission electron, and atomic force microscopy. In this context, it could be shown that strong, non-natural acidification drives NRC1 to unfold and aggregate into β-sheet-rich structures, preventing recombinant spidroins from assembling into aligned fibrils. Interestingly, NRN1 and NRC1 apparently do not interact with each other, making spidroin assembly easy to control step-by-step and straightforward due to missing unproductive side reactions.

PMID:
28128547
DOI:
10.1021/acs.biomac.6b01713
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center