Format

Send to

Choose Destination
Cell Rep. 2017 Jan 24;18(4):918-932. doi: 10.1016/j.celrep.2016.12.090.

PINK1 Primes Parkin-Mediated Ubiquitination of PARIS in Dopaminergic Neuronal Survival.

Author information

1
Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746, South Korea.
2
Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
3
Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA.
4
Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
5
Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746, South Korea.
6
Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA.
7
Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
8
Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Mayo Graduate School, Neurobiology of Disease, Mayo Clinic, Jacksonville, FL 32224, USA.
9
Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA. Electronic address: vdawson@jhmi.edu.
10
Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746, South Korea. Electronic address: jshin24@skku.edu.
11
Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA. Electronic address: tdawson@jhmi.edu.

Abstract

Mutations in PTEN-induced putative kinase 1 (PINK1) and parkin cause autosomal-recessive Parkinson's disease through a common pathway involving mitochondrial quality control. Parkin inactivation leads to accumulation of the parkin interacting substrate (PARIS, ZNF746) that plays an important role in dopamine cell loss through repression of proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α) promoter activity. Here, we show that PARIS links PINK1 and parkin in a common pathway that regulates dopaminergic neuron survival. PINK1 interacts with and phosphorylates serines 322 and 613 of PARIS to control its ubiquitination and clearance by parkin. PINK1 phosphorylation of PARIS alleviates PARIS toxicity, as well as repression of PGC-1α promoter activity. Conditional knockdown of PINK1 in adult mouse brains leads to a progressive loss of dopaminergic neurons in the substantia nigra that is dependent on PARIS. Altogether, these results uncover a function of PINK1 to direct parkin-PARIS-regulated PGC-1α expression and dopaminergic neuronal survival.

KEYWORDS:

PARIS; PGC-1α; PINK1; Parkinson’s disease; ZNF746; parkin; ubiquitin

PMID:
28122242
PMCID:
PMC5312976
DOI:
10.1016/j.celrep.2016.12.090
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center