Format

Send to

Choose Destination
AIDS. 2017 Feb 20;31(4):469-476. doi: 10.1097/QAD.0000000000001349.

Tenofovir alafenamide and elvitegravir loaded nanoparticles for long-acting prevention of HIV-1 vaginal transmission.

Author information

1
aSchool of Pharmacy & Health Professions, Creighton University, OmahabNebraska Center for Virology and School of Biological SciencescNebraska Center for Virology and Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.

Abstract

OBJECTIVE:

This report presents tenofovir (TFV) alafenamide (TAF) and elvitegravir (EVG) fabricated into nanoparticles for subcutaneous delivery as prevention strategy.

DESIGN:

Prospective prevention study in humanized bone marrow-liver-thymus (hu-BLT) mice.

METHODS:

Using an oil-in-water emulsion solvent evaporation technique, TAF + EVG drugs were entrapped together into nanoparticles containing poly(lactic-co-glycolic acid). In-vitro prophylaxis studies (90% inhibition concentration) compared nanoparticles with drugs in solution. Hu-BLT (n = 5/group) mice were given 200 mg/kg subcutaneous, and vaginally challenged with HIV-1 [5 × 10 tissue culture infectious dose for 50% of cells cultures (TCID50)] 4 and 14 days post-nanoparticle administration (post-nanoparticle injection). Control mice (n = 5) were challenged at 4 days. Weekly plasma viral load was performed using RT-PCR. Hu-BLT mice were sacrificed and lymph nodes were harvested for HIV-1 viral RNA detection by in-situ hybridization. In parallel, CD34 humanized mice (3/time point) compared TFV and EVG drug levels in vaginal tissues from nanoparticles and solution. TFV and EVG were analyzed from tissue using liquid chromatograph-tandem mass spectrometry (LC-MS/MS).

RESULTS:

TAF + EVG nanoparticles were less than 200 nm in size. In-vitro prophylaxis indicates TAF + EVG nanoparticles 90% inhibition concentration was 0.002 μg/ml and TAF + EVG solution was 0.78 μg/ml. TAF + EVG nanoparticles demonstrated detectable drugs for 14 days and 72 h for solution, respectively. All hu-BLT control mice became infected within 14 days after HIV-1 challenge. In contrast, hu-BLT mice that received nanoparticles and challenged at 4 days post-nanoparticle injection, 100% were uninfected, and 60% challenged at 14 days post-nanoparticle injection were uninfected (P = 0.007; Mantel-Cox test). In-situ hybridization confirmed these results.

CONCLUSION:

This proof-of-concept study demonstrated sustained protection for TAF + EVG nanoparticles in a hu-BLT mouse model of HIV vaginal transmission.

PMID:
28121666
PMCID:
PMC5283613
DOI:
10.1097/QAD.0000000000001349
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wolters Kluwer Icon for PubMed Central
Loading ...
Support Center