Format

Send to

Choose Destination
Mol Cell Endocrinol. 2018 Feb 15;462(Pt B):93-106. doi: 10.1016/j.mce.2017.01.031. Epub 2017 Jan 22.

Breast cancer metabolic cross-talk: Fibroblasts are hubs and breast cancer cells are gatherers of lipids.

Author information

1
Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Unidade de Investigação Em Patobiologia Molecular Do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisbon, Portugal.
2
Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Pathology Department, IPOLFG, Rua Prof Lima Basto, 1099-023, Lisbon, Portugal.
3
Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Unidade de Investigação Em Patobiologia Molecular Do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisbon, Portugal. Electronic address: jacinta.serpa@fcm.unl.pt.

Abstract

The cellular components of microenvironment are partners of cancer cells, sharing soluble factors and organic molecules to accomplish tumor energy and biomass demands. We tested the role of fibroblasts in fatty acids metabolism in breast cancer, addressing fatty acid synthase (FASN) expression and activity, the expression of lipids chaperons (FABPs) and transporters (FATPs) and lipids cellular content. We showed that the amount of lipids increased in cancer cells exposed to fibroblasts conditioned media, showing that lipids transfer is crucial in this metabolic cross-talk. Accordingly, it was seen in those cancer cells a concomitant decrease in the expression of FABP2 and FABP3 and an increase in FATP1 expression, whose function is independent of FABPs. The in vivo experiment corroborates the role of CAFs in tumor growth. Our study is one more step toward the understanding of metabolic dynamics between cancer cells and CAFs, disclosing FATP1 as a putative target to disturb the transfer of lipids between CAFs and breast cancer cells.

KEYWORDS:

Breast cancer; CAFs; FASN; FATP1; Metabolic cross-talk; Metabolic fitness; Microenvironment

PMID:
28119133
DOI:
10.1016/j.mce.2017.01.031
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center