Send to

Choose Destination
IEEE Trans Haptics. 2017 Jul-Sep;10(3):371-381. doi: 10.1109/TOH.2016.2635145. Epub 2016 Dec 5.

Investigation on Low Voltage Operation of Electrovibration Display.


This paper presents three methods of input voltage signals that allow low voltage operation of an electrovibration display while preserving the perceptual feel and strength of electrovibration stimuli. The first method uses the amplitude modulation of a high-frequency carrier-signal. The second method uses a dc-offset, and the third method uses a combination of the two methods. The performance of the three methods was evaluated by a physical experiment that measured and analyzed static (dc-component) and dynamic (vibratory component) friction forces and two subsequent psychophysical studies. The physical experiment showed that only the dc -offset method enabled a statistically significant increase in the static friction force between the fingertip and the surface of the electrovibration display. The static friction increase was closely related to the root mean square of input voltage level. In contrast, all of the three methods increased the dynamic friction force significantly, which was deemed to be related to the high frequency effect validated in the previous literature. The first psychophysical study showed that the three proposed methods can significantly reduce the peak-to-peak (p-p) amplitude of an input voltage signal while generating perceptually equally strong electrovibrations to that produced by the conventional method. Using lower p-p voltage has the merits of a simpler electrical circuit and less electromagnetic noise, saving the overall system cost. Further, the perceived intensity of electrovibration was more correlated to the dynamic friction force than the static friction force. The second psychophysical study was a discrimination experiment, and it demonstrated that all the three proposed methods and the conventional method can provide perceptually similar stimuli despite their different signal forms and voltage amplitudes. Our experimental investigation allowed us to conclude that the dc-offset method is the best way to lower the driving voltage of an electrovibration display while providing perceptually equivalent electrovibrations.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for IEEE Engineering in Medicine and Biology Society
Loading ...
Support Center