Effect of root morphology on the susceptibility of endodontically treated teeth to vertical root fracture: An ex-vivo model

J Mech Behav Biomed Mater. 2017 May:69:267-274. doi: 10.1016/j.jmbbm.2017.01.017. Epub 2017 Jan 12.

Abstract

Vertical root fracture (VRF) of endodontically treated teeth is relatively common, and the involved teeth have a poor prognosis. Previous destructive methodologies applied force to the root in an uneven manner; thus, the associated experiments could not truly assess the mechanical behavior of VRF. This problem was resolved in the current study via the novel application of a bursting pressure methodology to endodontically treated maxillary central incisors and premolars. Hydrostatic pressure was applied inside the root canal through a cannula bonded to the coronal access cavity, and the apical foramen was sealed. VRFs were observed as water burst from the fractured root surface. Morphometric parameters were measured by staining and serially sectioning the roots. The bursting pressure was significantly lower in the premolars compared with that in the incisors (19.1±3.3MPa and 25.5. ±4.5MPa, respectively, p=0.001). Cracks in the roots appeared from the apex to the cement enamel junction (CEJ) (61%), apex to mid-root (26%) and mid-root to CEJ (13%), and they involved either two root surfaces (52%) or one root surface (48%) and closely resembled clinical VRF cases. Positive correlations were found between the bursting pressure and the proximal root wall thickness, whereas correlations were not observed between the bursting pressure and the buccal or lingual wall thicknesses. Statistical Analyses of Covariance (ANCOVA) models showed that the proximal wall thickness and an elliptically shaped root cross section were the variables that indicated the differences in strength between premolars, which are more prone to VRF, and maxillary central incisors, which are less prone to VRF.

Keywords: Bursting pressure; Cracks; Morphometric parameters; Strength; Vertical root fracture.

MeSH terms

  • Bicuspid
  • Humans
  • Incisor
  • Root Canal Therapy
  • Tooth Fractures / pathology*
  • Tooth Root / pathology*
  • Tooth, Nonvital / pathology*