Format

Send to

Choose Destination
Brain Imaging Behav. 2018 Feb;12(1):64-77. doi: 10.1007/s11682-016-9665-8.

Recovery from chemotherapy-induced white matter changes in young breast cancer survivors?

Author information

1
Department of Radiology, University Hospitals Leuven, UZ Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium.
2
Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
3
Department of Old Age Psychiatry, University Hospitals Leuven, Leuven, Belgium.
4
Department of Electrical Engineering (ESAT), Processing of Speech and Images (PSI), KU Leuven, Leuven, Belgium.
5
Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
6
Icometrix, Leuven, Belgium.
7
Leuven Multidisciplinary Breast Center, University Hospitals Leuven, Leuven, Belgium.
8
Department of Obstetrics and Gynecology, Gynecological Oncology, University Hospitals, Leuven, Belgium.
9
Department of Radiology, University Hospitals Leuven, UZ Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium. sabine.deprez@uzleuven.be.
10
Department of Imaging and Pathology, KU Leuven, Leuven, Belgium. sabine.deprez@uzleuven.be.

Abstract

In a previous longitudinal diffusion tensor imaging (DTI) study, we observed cerebral white matter (WM) alterations (reduced fractional anisotropy (FA)) related to decreased cognitive performance 3-5 months after chemotherapy-treatment (t2) when compared to baseline (t1) (Deprez et al. in Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 30(3), 274-281. doi:10.1200/JCO.2011.36.8571, 2012). The current study investigates the evolution and the nature of these previously observed microstructural changes. Twenty-five young women with early-stage breast cancer who received chemotherapy treatment (C+), 14 who did not receive chemotherapy (C-) and 15 healthy controls (HC) previously studied, underwent reassessment 3-4 years after treatment (t3). We assessed (1) longitudinal changes of cognitive performance and FA and (2) cross-sectional group differences in myelin-water-imaging and multishell diffusion MRI metrics at t3. MRI metrics were assessed on a voxel-by-voxel basis and in regions-of-interest (ROI) in which previous WM injury was detected. Longitudinal results: Mixed-effects modeling revealed significant group-time interactions for verbal memory and processing speed (p < 0.05) reflecting regained performance in the C+ group at t3. Furthermore, in chemotherapy-treated patients, FA returned to baseline levels at t3 in all ROIs (p < 0.002), whereas no FA changes were seen in controls. Additionally, FA increase from t2 to t3 correlated with time since treatment in two of the four regions (r = 0.40, p < 0.05). Cross-sectional results: Advanced diffusion MRI and myelin-water imaging metrics in the ROIs did not differ between groups. Similarly, no whole-brain voxelwise differences were detected. Initial WM alterations and reduced cognitive performance following chemotherapy-treatment were found to recover in a group of young breast cancer survivors three to four years after treatment.

KEYWORDS:

Breast cancer; Chemotherapy; Cognitive impairment; MR diffusion imaging; MR myelin water imaging; White matter

PMID:
28102529
DOI:
10.1007/s11682-016-9665-8
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center