Format

Send to

Choose Destination
Mol Pharmacol. 2017 Apr;91(4):339-347. doi: 10.1124/mol.116.107623. Epub 2017 Jan 13.

AKT1, LKB1, and YAP1 Revealed as MYC Interactors with NanoLuc-Based Protein-Fragment Complementation Assay.

Author information

1
Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.).
2
Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.) hfu@emory.edu.

Abstract

The c-Myc (MYC) transcription factor is a major cancer driver and a well-validated therapeutic target. However, directly targeting MYC has been challenging. Thus, identifying proteins that interact with and regulate MYC may provide alternative strategies to inhibit its oncogenic activity. In this study, we report the development of a NanoLuc-based protein-fragment complementation assay (NanoPCA) and mapping of the MYC protein interaction hub in live mammalian cells. The NanoPCA system was configured to enable detection of protein-protein interactions (PPI) at the endogenous level, as shown with PRAS40 dimerization, and detection of weak interactions, such as PINCH1-NCK2. Importantly, NanoPCA allows the study of PPI dynamics with reversible interactions. To demonstrate its utility for large-scale PPI detection in mammalian intracellular environment, we have used NanoPCA to examine MYC interaction with 83 cancer-associated proteins in live cancer cell lines. Our new MYC PPI data confirmed known MYC-interacting proteins, such as MAX, GSK3A, and SMARCA4, and revealed a panel of novel MYC interaction partners, such as RAC-α serine/threonine-protein kinase (AKT)1, liver kinase B (LKB)1, and Yes-associated protein (YAP)1. The MYC interactions with AKT1, LKB1, and YAP1 were confirmed by coimmunoprecipitation of endogenous proteins. Importantly, AKT1, LKB1, and YAP1 were able to activate MYC in a transcriptional reporter assay. Thus, these vital growth control proteins may represent promising MYC regulators, suggesting new mechanisms that couple energetic and metabolic pathways and developmental signaling to MYC-regulated cellular programs.

PMID:
28087810
PMCID:
PMC5363710
DOI:
10.1124/mol.116.107623
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center