Format

Send to

Choose Destination
Neurosci Biobehav Rev. 2017 Mar;74(Pt A):58-75. doi: 10.1016/j.neubiorev.2017.01.002. Epub 2017 Jan 10.

Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications.

Author information

1
Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, United Kingdom. Electronic address: sandra.vieira@kcl.ac.uk.
2
Centre of Mathematics, Computation, and Cognition, Universidade Federal do ABC, Rua Arcturus, Jardim Antares, São Bernardo do Campo, SP CEP 09.606-070, Brazil.
3
Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, United Kingdom.

Abstract

Deep learning (DL) is a family of machine learning methods that has gained considerable attention in the scientific community, breaking benchmark records in areas such as speech and visual recognition. DL differs from conventional machine learning methods by virtue of its ability to learn the optimal representation from the raw data through consecutive nonlinear transformations, achieving increasingly higher levels of abstraction and complexity. Given its ability to detect abstract and complex patterns, DL has been applied in neuroimaging studies of psychiatric and neurological disorders, which are characterised by subtle and diffuse alterations. Here we introduce the underlying concepts of DL and review studies that have used this approach to classify brain-based disorders. The results of these studies indicate that DL could be a powerful tool in the current search for biomarkers of psychiatric and neurologic disease. We conclude our review by discussing the main promises and challenges of using DL to elucidate brain-based disorders, as well as possible directions for future research.

KEYWORDS:

Autoencoders; Convolutional neural networks; Deep belief networks; Deep learning; Machine learning; Multilayer perceptron; Neuroimaging; Neurologic disorders; Pattern recognition; Psychiatric disorders

PMID:
28087243
DOI:
10.1016/j.neubiorev.2017.01.002
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center