Format

Send to

Choose Destination
Acta Oncol. 2017 Mar;56(3):462-470. doi: 10.1080/0284186X.2016.1273546. Epub 2017 Jan 12.

Patient factors and quality of life outcomes differ among four subgroups of oncology patients based on symptom occurrence.

Author information

1
a Department of Oncology, Division of Cancer Medicine , Oslo University Hospital , Oslo , Norway.
2
b Institute of Clinical Medicine, Faculty of Medicine, University of Oslo , Oslo , Norway.
3
c Department of Research and Development, Division of Emergencies and Critical Care , Oslo University Hospital , Oslo , Norway.
4
d Lovisenberg Diaconal University College , Oslo , Norway.
5
e Research Support Services, Oslo University Hospital , Oslo , Norway.
6
f Department of Oncology and K.G. Jebsen Colorectal Cancer Research Centre, Division of Cancer Medicine , Oslo University Hospital , Oslo , Norway.
7
g Department of Obstetrics and Gynecology , Division of Surgery, Sørlandet Hospital HF , Kristiansand , Norway.
8
h School of Nursing , University of California , San Francisco , CA , USA.
9
i Institute of Health and Society, Faculty of Medicine, University of Oslo , Oslo , Norway.

Abstract

CONTEXT:

Reviews of the literature on symptoms in oncology patients undergoing curative treatment, as well as patients receiving palliative care, suggest that they experience multiple, co-occurring symptoms and side effects.

OBJECTIVES:

The purposes of this study were to determine if subgroups of oncology patients could be identified based on symptom occurrence rates and if these subgroups differed on a number of demographic and clinical characteristics, as well as on quality of life (QoL) outcomes.

METHODS:

Latent class analysis (LCA) was used to identify subgroups (i.e. latent classes) of patients with distinct symptom experiences based on the occurrence rates for the 13 most common symptoms from the Memorial Symptom Assessment Scale.

RESULTS:

In total, 534 patients with breast, head and neck, colorectal, or ovarian cancer participated. Four latent classes of patients were identified based on probability of symptom occurrence: all low class [i.e. low probability for all symptoms (n = 152)], all high class (n = 149), high psychological class (n = 121), and low psychological class (n = 112). Patients in the all high class were significantly younger compared with patients in the all low class. Furthermore, compared to the other three classes, patients in the all high class had lower functional status and higher comorbidity scores, and reported poorer QoL scores. Patients in the high and low psychological classes had a moderate probability of reporting physical symptoms. Patients in the low psychological class reported a higher number of symptoms, a lower functional status, and poorer physical and total QoL scores.

CONCLUSION:

Distinct subgroups of oncology patients can be identified based on symptom occurrence rates. Patient characteristics that are associated with these subgroups can be used to identify patients who are at greater risk for multiple co-occurring symptoms and diminished QoL, so that these patients can be offered appropriate symptom management interventions.

PMID:
28077018
DOI:
10.1080/0284186X.2016.1273546
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Taylor & Francis
Loading ...
Support Center