Format

Send to

Choose Destination
Nat Commun. 2017 Jan 10;8:13989. doi: 10.1038/ncomms13989.

Starved epithelial cells uptake extracellular matrix for survival.

Author information

1
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
2
Division of Endocrinology, Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA.
3
Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.
4
Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.

Abstract

Extracellular matrix adhesion is required for normal epithelial cell survival, nutrient uptake and metabolism. This requirement can be overcome by oncogene activation. Interestingly, inhibition of PI3K/mTOR leads to apoptosis of matrix-detached, but not matrix-attached cancer cells, suggesting that matrix-attached cells use alternate mechanisms to maintain nutrient supplies. Here we demonstrate that under conditions of dietary restriction or growth factor starvation, where PI3K/mTOR signalling is decreased, matrix-attached human mammary epithelial cells upregulate and internalize β4-integrin along with its matrix substrate, laminin. Endocytosed laminin localizes to lysosomes, results in increased intracellular levels of essential amino acids and enhanced mTORC1 signalling, preventing cell death. Moreover, we show that starved human fibroblasts secrete matrix proteins that maintain the growth of starved mammary epithelial cells contingent upon epithelial cell β4-integrin expression. Our study identifies a crosstalk between stromal fibroblasts and epithelial cells under starvation that could be exploited therapeutically to target tumours resistant to PI3K/mTOR inhibition.

PMID:
28071763
PMCID:
PMC5234072
DOI:
10.1038/ncomms13989
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center