Format

Send to

Choose Destination
J Am Chem Soc. 2017 Jan 18;139(2):639-642. doi: 10.1021/jacs.6b12511. Epub 2016 Dec 30.

Covalent Modulators of the Vacuolar ATPase.

Author information

1
Department of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92307, United States.
2
MGH Center for Systems Biology, Program in Membrane Biology & Division of Nephrology, Richard B. Simches Research Center, Massachusetts General Hospital and Department of Medicine, Harvard Medical School , Boston, Massachusetts 02114, United States.

Abstract

The vacuolar H+ ATPase (V-ATPase) is a complex multisubunit machine that regulates important cellular processes through controlling acidity of intracellular compartments in eukaryotes. Existing small-molecule modulators of V-ATPase either are restricted to targeting one membranous subunit of V-ATPase or have poorly understood mechanisms of action. Small molecules with novel and defined mechanisms of inhibition are thus needed to functionally characterize V-ATPase and to fully evaluate the therapeutic relevance of V-ATPase in human diseases. We have discovered electrophilic quinazolines that covalently modify a soluble catalytic subunit of V-ATPase with high potency and exquisite proteomic selectivity as revealed by fluorescence imaging and chemical proteomic activity-based profiling. The site of covalent modification was mapped to a cysteine residue located in a region of V-ATPase subunit A that is thought to regulate the dissociation of V-ATPase. We further demonstrate that a previously reported V-ATPase inhibitor, 3-bromopyruvate, also targets the same cysteine residue and that our electrophilic quinazolines modulate the function of V-ATPase in cells. With their well-defined mechanism of action and high proteomic specificity, the described quinazolines offer a powerful set of chemical probes to investigate the physiological and pathological roles of V-ATPase.

Supplemental Content

Full text links

Icon for American Chemical Society Icon for PubMed Central
Loading ...
Support Center