Format

Send to

Choose Destination
J Mech Behav Biomed Mater. 2017 Mar;67:51-60. doi: 10.1016/j.jmbbm.2016.12.002. Epub 2016 Dec 3.

Structure-function relationships of human meniscus.

Author information

1
Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, KYS, POB 100, FI-70029 Kuopio, Finland. Electronic address: elvis_kd@yahoo.com.
2
Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland.
3
Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, P.O. Box 50, FI-90029 Oulu, Finland.
4
Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland.
5
Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, KYS, POB 100, FI-70029 Kuopio, Finland.

Abstract

Biomechanical properties of human meniscus have been shown to be site-specific. However, it is not known which meniscus constituents at different depths and locations contribute to biomechanical properties obtained from indentation testing. Therefore, we investigated the composition and structure of human meniscus in a site- and depth-dependent manner and their relationships with tissue site-specific biomechanical properties. Elastic and poroelastic properties were analyzed from experimental stress-relaxation and sinusoidal indentation measurements with fibril reinforced poroelastic finite element modeling. Proteoglycan (PG) and collagen contents, as well as the collagen orientation angle, were determined as a function of tissue depth using microscopic and spectroscopic methods, and they were compared with biomechanical properties. For all the measurement sites (anterior, middle and posterior) of lateral and medial menisci (n=26), PG content and collagen orientation angle increased as a function of tissue depth while the collagen content had an initial sharp increase followed by a decrease across tissue depth. The highest values (p<0.05) of elastic parameters (equilibrium and instantaneous moduli) and strain-dependent biomechanical parameters (strain-dependent fibril network modulus and permeability) were observed in the anterior horn of the medial meniscus. This location had also higher (p<0.05) PG content in the deep meniscus, higher (p<0.05) collagen content in the entire tissue depth, and lower (p<0.05) collagen orientation angle at the superficial tissue, as compared to many other locations. On the other hand, in certain comparisons (such as anterior vs. middle sites of the medial meniscus) significantly higher (p<0.05) collagen content and lower orientation angle, without any difference in the PG content, were consistent with increased meniscus modulus and/or nonlinear permeability. This study suggests that nonlinear biomechanical properties of meniscus, caused by the collagen network and fluid, may be strongly influenced by tissue osmotic swelling from the deep meniscus caused by the increased PG content, leading to increased collagen fibril tension. These nonlinear biomechanical properties are suggested to be further amplified by higher collagen content at all tissue depths and superficial collagen fibril orientation. However, these structure-function relationships are suggested to be highly site-specific.

KEYWORDS:

Biomechanics; Collagen; Digital densitometry; Fourier transform infrared imaging; Meniscus; Polarized light microscopy; Proteoglycan

PMID:
27987426
DOI:
10.1016/j.jmbbm.2016.12.002
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center