Vertically Aligned FeOOH/NiFe Layered Double Hydroxides Electrode for Highly Efficient Oxygen Evolution Reaction

ACS Appl Mater Interfaces. 2017 Jan 11;9(1):464-471. doi: 10.1021/acsami.6b13360. Epub 2016 Dec 22.

Abstract

Employing a low-cost and highly efficient electrocatalyst to replace Ir-based catalysts for oxygen evolution reaction (OER) has drawn increasing interest in renewable energy storage. In this work, a vertically aligned FeOOH/NiFe layered double hydroxides (LDHs) nanosheets supported on Ni foam (VA FeOOH/NiFe LDHs-NF) is prepared as a highly effective OER electrode in alkaline electrolyte. The VA FeOOH/NiFe LDHs-NF represents nanosheet arrays on nickel foam with some interspace among them. The vertically aligned and interlayer-structured architecture is binder-free and contributes to facile strain relaxation, relieving the exfoliation of the catalysts layer caused by the oxygen evolution process. The as-prepared electrode shows current densities of 10 and 500 mA cm-2 at overpotentials of 208 and 288 mV, and good stability in a half-cell electrolyzer. Besides, the alkaline polymer electrolyte water electrolyzer (APEWE) with this electrode showed 1.71 V at 200 mA cm-2, and 2.041 V at 500 mA cm-2, exhibiting the corresponding energy efficiency of 86.0% and 72.0% (based on the lower heating value of hydrogen), which is better than the typical commercial alkaline water electrolyzer.

Keywords: alkaline polymer electrolyte water electrolyzer; binder-free; layered double hydroxides; oxygen evolution reaction; water splitting.