Format

Send to

Choose Destination
Acta Neuropathol Commun. 2016 Dec 9;4(1):128.

The effects of the novel A53E alpha-synuclein mutation on its oligomerization and aggregation.

Author information

1
Department of Neurodegeneration and Restorative Research, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany.
2
Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
3
Chronic Disease Research Center (CEDOC), NOVA Medical School, Campo dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal.
4
Department of Neurodegeneration and Restorative Research, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany. touteir@gwdg.de.
5
Chronic Disease Research Center (CEDOC), NOVA Medical School, Campo dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal. touteir@gwdg.de.
6
Max Planck Institute for Experimental Medicine, Göttingen, Germany. touteir@gwdg.de.

Abstract

α-synuclein (aSyn) is associated with both sporadic and familial forms of Parkinson's disease (PD), the second most common neurodegenerative disorder after Alzheimer's disease. In particular, multiplications and point mutations in the gene encoding for aSyn cause familial forms of PD. Moreover, the accumulation of aSyn in Lewy Bodies and Lewy neurites in disorders such as PD, dementia with Lewy bodies, or multiple system atrophy, suggests aSyn misfolding and aggregation plays an important role in these disorders, collectively known as synucleinopathies. The exact function of aSyn remains unclear, but it is known to be associated with vesicles and membranes, and to have an impact on important cellular functions such as intracellular trafficking and protein degradation systems, leading to cellular pathologies that can be readily studied in cell-based models. Thus, understanding the molecular effects of aSyn point mutations may provide important insight into the molecular mechanisms underlying disease onset.We investigated the effect of the recently identified A53E aSyn mutation. Combining in vitro studies with studies in cell models, we found that this mutation reduces aSyn aggregation and increases proteasome activity, altering normal proteostasis.We observed that, in our experimental paradigms, the A53E mutation affects specific steps of the aggregation process of aSyn and different cellular processes, providing novel ideas about the molecular mechanisms involved in synucleinopathies.

KEYWORDS:

Aggregation; Alpha-synuclein; Neurodegeneration; Oligomerization; Parkinson’s disease

PMID:
27938414
PMCID:
PMC5148884
DOI:
10.1186/s40478-016-0402-8
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center