Format

Send to

Choose Destination
Sci Rep. 2016 Dec 8;6:38753. doi: 10.1038/srep38753.

Inhibition of PKR protects against H2O2-induced injury on neonatal cardiac myocytes by attenuating apoptosis and inflammation.

Author information

1
Department of Cardiovascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
2
Department of endocrinology, Xi'an Central Hospital, Shaanxi, China.
3
Department of Cardiovascular Surgery, Zhong Shan Hospital, School of Medicine, Fudan University, Shanghai, China.

Abstract

Reactive oxygenation species (ROS) generated from reperfusion results in cardiac injury through apoptosis and inflammation, while PKR has the ability to promote apoptosis and inflammation. The aim of the study was to investigate whether PKR is involved in hydrogen peroxide (H2O2) induced neonatal cardiac myocytes (NCM) injury. In our study, NCM, when exposed to H2O2, resulted in persistent activation of PKR due to NCM endogenous RNA. Inhibition of PKR by 2-aminopurine (2-AP) or siRNA protected against H2O2 induced apoptosis and injury. To elucidate the mechanism, we revealed that inhibition of PKR alleviated H2O2 induced apoptosis companied by decreased caspase3/7 activity, BAX and caspase-3 expression. We also revealed that inhibition of PKR suppressed H2O2 induced NFκB pathway and NLRP3 activation. Finally, we found ADAR1 mRNA and protein expression were both induced after H2O2 treatment through STAT-2 dependent pathway. By gain and loss of ADAR1 expression, we confirmed ADAR1 modulated PKR activity. Therefore, we concluded inhibition of PKR protected against H2O2-induced injury by attenuating apoptosis and inflammation. A self-preservation mechanism existed in NCM that ADAR1 expression is induced by H2O2 to limit PKR activation simultaneously. These findings identify a novel role for PKR/ADAR1 in myocardial reperfusion injury.

PMID:
27929137
PMCID:
PMC5144063
DOI:
10.1038/srep38753
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center