Send to

Choose Destination
RNA Biol. 2017 Feb;14(2):146-155. doi: 10.1080/15476286.2016.1265199. Epub 2016 Dec 2.

RNA decay, evolution, and the testis.

Author information

a Department of Reproductive Medicine , School of Medicine, University of California, San Diego , La Jolla , CA , USA.
b Institute of Genomic Medicine, University of California , San Diego, La Jolla , CA , USA.


NMD is a highly conserved pathway that degrades specific subsets of RNAs. There is increasing evidence for roles of NMD in development. In this commentary, we focus on spermatogenesis, a process dramatically impeded upon loss or disruption of NMD. NMD requires strict regulation for normal spermatogenesis, as loss of a newly discovered NMD repressor, UPF3A, also causes spermatogenic defects, most prominently during meiosis. We discuss the unusual evolution of UPF3A, whose paralog, UPF3B, has the opposite biochemical function and acts in brain development. We also discuss the regulation of NMD during germ cell development, including in chromatoid bodies, which are specifically found in haploid germ cells. The ability of NMD to coordinately degrade batteries of RNAs in a regulated fashion during development is akin to the action of transcriptional pathways, yet has the advantage of driving rapid changes in gene expression.


NMD; RNA decay; neofunctionalization; spermatogenesis; subfunctionalization

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Taylor & Francis Icon for PubMed Central
Loading ...
Support Center