Format

Send to

Choose Destination
J Immunol. 2017 Jan 1;198(1):170-183. Epub 2016 Nov 30.

Homocysteine Activates B Cells via Regulating PKM2-Dependent Metabolic Reprogramming.

Author information

1
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, People's Republic of China; and.
2
Cardiovascular Division, British Heart Foundation Centre for Vascular Regeneration, King's College London, London SE5 9NU, United Kingdom.
3
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, People's Republic of China; and xwang@bjmu.edu.cn juanfeng@bjmu.edu.cn.

Abstract

The overactivation of immune cells plays an important role in the pathogenesis of hyperhomocysteinemia (HHcy)-accelerated atherosclerosis. Homocysteine (Hcy) activates B cell proliferation and Ab secretion; however, the underlying mechanisms for these effects remain largely unknown. Metabolic reprogramming is critical for lymphocyte activation and effector function. In this study, we showed that Hcy-activated B cells displayed an increase in both oxidative phosphorylation and glycolysis, with a tendency to shift toward the latter, as well as an accumulation of intermediates in the pentose phosphate pathway, to provide energy and biosynthetic substrates for cell growth and function. Mechanistically, Hcy increased both the protein expression and glycolytic enzyme activity of the pyruvate kinase muscle isozyme 2 (PKM2) in B cells, whereas the PKM2 inhibitor shikonin restored Hcy-induced metabolic changes, as well as B cell proliferation and Ab secretion both in vivo and in vitro, indicating that PKM2 plays a critical role in metabolic reprogramming in Hcy-activated B cells. Further investigation revealed that the Akt-mechanistic target of rapamycin signaling pathway was involved in this process, as the mechanistic target of rapamycin inhibitor rapamycin inhibited Hcy-induced changes in PKM2 enzyme activity and B cell activation. Notably, shikonin treatment effectively attenuated HHcy-accelerated atherosclerotic lesion formation in apolipoprotein E-deficient mice. In conclusion, our results demonstrate that PKM2 is required to support metabolic reprogramming for Hcy-induced B cell activation and function, and it might serve as a critical regulator in HHcy-accelerated initiation of atherosclerosis.

PMID:
27903739
PMCID:
PMC5164882
DOI:
10.4049/jimmunol.1600613
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center