Format

Send to

Choose Destination
Biochem Pharmacol. 2017 Jan 15;124:83-93. doi: 10.1016/j.bcp.2016.11.023. Epub 2016 Nov 27.

Role of the endocannabinoid system in the control of mouse myometrium contractility during the menstrual cycle.

Author information

1
Department of Pharmacy, University of Naples Federico II, Naples, Italy; Endocannabinoid Research Group, National Research Council, Naples, Italy.
2
Endocannabinoid Research Group, National Research Council, Naples, Italy; Institute of Protein Biochemistry, National Research Council, Naples, Italy; Institute of Applied Sciences & Intelligent Systems, National Research Council, Pozzuoli, Naples, Italy.
3
Department of Pharmacy, University of Naples Federico II, Naples, Italy.
4
Endocannabinoid Research Group, National Research Council, Naples, Italy; Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Naples, Italy.
5
Department of Pharmacy, University of Naples Federico II, Naples, Italy; Endocannabinoid Research Group, National Research Council, Naples, Italy. Electronic address: franborr@unina.it.

Abstract

Cannabis and cannabinoids are known to affect female reproduction. However, the role of the endocannabinoid system in mouse uterine contractility in the dioestrus and oestrus phases has not been previously investigated. The present study aimed at filling this gap. Endocannabinoid (anandamide and 2-arachidonoylglycerol) levels were measured in mouse uterus at dioestrus and oestrus phases by liquid chromatography-mass spectrometry; quantitative reverse transcription-PCR and western blot were used to measured the expression of cannabinoid receptors and enzymes involved in the metabolism of endocannabinoids. Contractility was evaluated in vitro either on the spontaneous contractions or by stimulating the isolated uterus with exogenous spasmogens. The tissue concentrations of anandamide and 2-AG were reduced in the oestrus phase, compared to dioestrus. Uteri obtained in the dioestrus, but not oestrus, phase showed spontaneous phasic prostaglandin-mediated contractions that were reduced by ACEA (CB1 receptor agonist) and to a lower extent by JWH133 (CB2 receptor agonist). These inhibitory effects were counteracted by the corresponding selective antagonists. Neither ACEA nor JWH133 did affect the contractions induced by exogenous PGE2 in the uterus from the oestrus phase. The FAAH inhibitor JNJ1661010 and, to a lower extent, the MAGL inhibitor JZL184 also reduced spontaneous contractions. It is concluded that the endocannabinoid system undergoes to adaptive changes between the oestrus and dioestrus phases. CB1 and, to a lower extent, CB2 receptor activation results in selective inhibition of myometrial contractility, without un-specific relaxing effects on the smooth muscle. These results might be of interest for female marijuana smokers as well as for the design of novel tocolytic agents.

KEYWORDS:

Cannabis; Endogenous cannabinoid system; Menstrual cycle; Myometrium contractility; Tocolysis

PMID:
27899300
DOI:
10.1016/j.bcp.2016.11.023
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center