Send to

Choose Destination
J Bacteriol. 2017 Jan 12;199(3). pii: e00739-16. doi: 10.1128/JB.00739-16. Print 2017 Feb 1.

Characterization of Runella slithyformis HD-Pnk, a Bifunctional DNA/RNA End-Healing Enzyme Composed of an N-Terminal 2',3'-Phosphoesterase HD Domain and a C-Terminal 5'-OH Polynucleotide Kinase Domain.

Author information

Molecular Biology Program, Sloan-Kettering Institute, New York, New York, USA.
Molecular Biology Program, Sloan-Kettering Institute, New York, New York, USA


5'- and 3'-end-healing reactions are key steps in nucleic acid break repair in which 5'-OH ends are phosphorylated by a polynucleotide kinase (Pnk) and 3'-PO4 or 2',3'-cyclic-PO4 ends are hydrolyzed by a phosphoesterase to generate the 5'-PO4 and 3'-OH termini required for sealing by classic polynucleotide ligases. End-healing and sealing enzymes are present in diverse bacterial taxa, often organized as modular units within a single multifunctional polypeptide or as subunits of a repair complex. Here we identify and characterize Runella slithyformis HD-Pnk as a novel bifunctional end-healing enzyme composed of an N-terminal 2',3'-phosphoesterase HD domain and a C-terminal 5'-OH polynucleotide kinase P-loop domain. HD-Pnk phosphorylates 5'-OH polynucleotides (9-mers or longer) in the presence of magnesium and any nucleoside triphosphate donor. HD-Pnk dephosphorylates RNA 2',3'-cyclic phosphate, RNA 3'-phosphate, RNA 2'-phosphate, and DNA 3'-phosphate ends in the presence of a transition metal cofactor, which can be nickel, copper, or cobalt. HD-Pnk homologs are present in genera from 11 bacterial phyla and are often encoded in an operon with a putative ATP-dependent polynucleotide ligase. IMPORTANCE The present study provides insights regarding the diversity of nucleic acid repair strategies via the characterization of Runella slithyformis HD-Pnk as the exemplar of a novel clade of dual 5'- and 3'-end-healing enzymes that phosphorylate 5'-OH termini and dephosphorylate 2',3'-cyclic-PO4, 3'-PO4, and 2'-PO4 ends. The distinctive feature of HD-Pnk is its domain composition, i.e., a fusion of an N-terminal HD phosphohydrolase module and a C-terminal P-loop polynucleotide kinase module. Homologs of Runella HD-Pnk with the same domain composition, same domain order, and similar polypeptide sizes are distributed widely among genera from 11 bacterial phyla.


3′ phosphatase; nucleic acid repair; polynucleotide kinase

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center