Format

Send to

Choose Destination
Sci Rep. 2016 Nov 28;6:37434. doi: 10.1038/srep37434.

Metabolic response induced by parasitic plant-fungus interactions hinder amino sugar and nucleotide sugar metabolism in the host.

Author information

1
College of Pharmacy, Seoul National University, Seoul 08826, Korea.
2
Department of Statistics, Seoul National University, Seoul 08826, Korea.
3
Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
4
Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
5
Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
6
School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
7
Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.

Abstract

Infestation by the biotrophic pathogen Gymnosporangium asiaticum can be devastating for plant of the family Rosaceae. However, the phytopathology of this process has not been thoroughly elucidated. Using a metabolomics approach, we discovered the intrinsic activities that induce disease symptoms after fungal invasion in terms of microbe-induced metabolic responses. Through metabolic pathway enrichment and mapping, we found that the host altered its metabolite levels, resulting in accumulation of tetrose and pentose sugar alcohols, in response to this fungus. We then used a multiple linear regression model to evaluate the effect of the interaction between this abnormal accumulation of sugar alcohol and the group variable (control/parasitism). The results revealed that this accumulation resulted in deficiency in the supply of specific sugars, which led to a lack of amino sugar and nucleotide sugar metabolism. Halting this metabolism could hamper pivotal functions in the plant host, including cell wall synthesis and lesion repair. In conclusion, our findings indicate that altered metabolic responses that occur during fungal parasitism can cause deficiency in substrates in pivotal pathways and thereby trigger pathological symptoms.

PMID:
27892480
PMCID:
PMC5124995
DOI:
10.1038/srep37434
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center