Dynamic metabolic exchange governs a marine algal-bacterial interaction

Elife. 2016 Nov 18:5:e17473. doi: 10.7554/eLife.17473.

Abstract

Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens, a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale.

Keywords: Emiliania huxleyi; Indole-3-acetic acid; Phaeobacter inhibens; Roseobacter group; ecology; programmed cell death; symbiosis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Aquatic Organisms / growth & development
  • Aquatic Organisms / metabolism
  • Bacterial Adhesion
  • Cell Survival / drug effects
  • Haptophyta / metabolism
  • Haptophyta / microbiology*
  • Haptophyta / physiology*
  • Indoleacetic Acids / metabolism*
  • Rhodobacteraceae / growth & development*
  • Rhodobacteraceae / metabolism*
  • Tryptophan / metabolism*

Substances

  • Indoleacetic Acids
  • indoleacetic acid
  • Tryptophan