Send to

Choose Destination
Pediatr Infect Dis J. 2017 Feb;36(2):216-223. doi: 10.1097/INF.0000000000001399.

Neisseria meningitidis Serogroup B Vaccine, Bivalent rLP2086, Induces Broad Serum Bactericidal Activity Against Diverse Invasive Disease Strains Including Outbreak Strains.

Author information

From the *Pfizer Vaccine Research and Development, Pearl River, New York; and †Pfizer Vaccine Research and Development, Collegeville, Pennsylvania.



Bivalent rLP2086 (Trumenba), 1 of 2 meningococcal serogroup B (MnB) vaccines recently approved in the United States for the prevention of MnB disease in individuals 10-25 years of age, is composed of 2 lipidated factor H binding proteins from subfamilies A and B. This study evaluated the breadth of MnB strain coverage elicited by bivalent rLP2086 measured with serum bactericidal assays using human complement (hSBAs).


hSBA responses to diverse MnB clinical strains circulating in the United States and Europe (n = 23), as well as recent US university outbreak strains (n = 4), were evaluated. Individual prevaccination and postvaccination sera from adolescents and young adults previously enrolled in phase 2 clinical studies of bivalent rLP2086 were assessed. Responders were defined by an hSBA titer ≥1:8, which is more stringent than the accepted correlate of protection (hSBA titer ≥1:4).


Baseline hSBA response rates were generally low; robust increases were observed after 2 and 3 doses of bivalent rLP2086, with hSBA responses to all test strains ranging from 31.8% to 100% and 55.6% to 100%, respectively. hSBA responses to strains expressing prevalent subfamily A and B factor H binding protein variants in the United States and Europe, A22 and B24, ranged from 88.0% to 95.0% and 81.0% to 100.0%, respectively, after dose 3. Substantial responses were also observed for recent US outbreak strains.


Bivalent rLP2086 elicits robust hSBA responses to MnB strains expressing 14 factor H binding protein variants representing approximately 80% of MnB invasive isolates and different from vaccine antigens, suggesting that bivalent rLP2086 confers broad protection against diverse MnB disease-causing strains.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wolters Kluwer
Loading ...
Support Center