Format

Send to

Choose Destination
Ageing Res Rev. 2017 Oct;39:46-58. doi: 10.1016/j.arr.2016.10.005. Epub 2016 Oct 31.

Impact of intermittent fasting on health and disease processes.

Author information

1
Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, United States; Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States. Electronic address: mark.mattson@nih.gov.
2
Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States.
3
Genesis Breast Cancer Prevention Centre, University Hospital South Manchester, Wythenshaw, M23 9LT Manchester, United Kingdom.

Abstract

Humans in modern societies typically consume food at least three times daily, while laboratory animals are fed ad libitum. Overconsumption of food with such eating patterns often leads to metabolic morbidities (insulin resistance, excessive accumulation of visceral fat, etc.), particularly when associated with a sedentary lifestyle. Because animals, including humans, evolved in environments where food was relatively scarce, they developed numerous adaptations that enabled them to function at a high level, both physically and cognitively, when in a food-deprived/fasted state. Intermittent fasting (IF) encompasses eating patterns in which individuals go extended time periods (e.g., 16-48h) with little or no energy intake, with intervening periods of normal food intake, on a recurring basis. We use the term periodic fasting (PF) to refer to IF with periods of fasting or fasting mimicking diets lasting from 2 to as many as 21 or more days. In laboratory rats and mice IF and PF have profound beneficial effects on many different indices of health and, importantly, can counteract disease processes and improve functional outcome in experimental models of a wide range of age-related disorders including diabetes, cardiovascular disease, cancers and neurological disorders such as Alzheimer's disease Parkinson's disease and stroke. Studies of IF (e.g., 60% energy restriction on 2days per week or every other day), PF (e.g., a 5day diet providing 750-1100kcal) and time-restricted feeding (TRF; limiting the daily period of food intake to 8h or less) in normal and overweight human subjects have demonstrated efficacy for weight loss and improvements in multiple health indicators including insulin resistance and reductions in risk factors for cardiovascular disease. The cellular and molecular mechanisms by which IF improves health and counteracts disease processes involve activation of adaptive cellular stress response signaling pathways that enhance mitochondrial health, DNA repair and autophagy. PF also promotes stem cell-based regeneration as well as long-lasting metabolic effects. Randomized controlled clinical trials of IF versus PF and isoenergetic continuous energy restriction in human subjects will be required to establish the efficacy of IF in improving general health, and preventing and managing major diseases of aging.

KEYWORDS:

Alzheimer’s disease; Blood pressure; Cardiovascular disease; Diabetes; Insulin resistance; Intermittent fasting; Ketone bodies; Obesity

PMID:
27810402
PMCID:
PMC5411330
DOI:
10.1016/j.arr.2016.10.005
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center