Dynamic Conversion Between Se-N Covalent and Noncovalent Interactions

J Phys Chem A. 2016 Nov 17;120(45):9081-9088. doi: 10.1021/acs.jpca.6b08003. Epub 2016 Nov 3.

Abstract

Se-N dynamic covalent bond is a new dynamic covalent bond which has applications in the fabrication of stimuli responsive and self-healing functional materials. Although recent advances have been achieved in the experimental aspect, little is known about the formation mechanism of Se-N dynamic covalent bond. Here the structures and nature of Se-N dynamic covalent bond between three kinds of pyridine derivatives R-C5H4N, [pyridine (R = H), 4-methylpyridine (R = CH3), 4-dimethylamino-pyridine (R = N(CH3)2)] and phenylselenyl bromine (PhSeBr) have been analyzed using density functional theory. The interactions between Se atom in PhSeBr and N atom in pyridine or pyridine derivatives can be divided into three models: dissociation, nonbonding interaction and covalent bond interaction. Quantum chemical calculations on three series compounds show that these three models can convert mutually, which results in the generation of Se-N dynamic covalent bond. Solvent effects produced in polar solvents such as CH2Cl2 can make the conversion between Se-N covalent bond and Se···N nonbonding interactions easier. The kind of the substituents in pyridine ring can affect the conversion process: the stronger the electron-donating ability of the substituent, the easier the structure transformation.