Send to

Choose Destination
J Trauma Acute Care Surg. 2017 Jan;82(1):102-108. doi: 10.1097/TA.0000000000001264.

There's an app for that: A handheld smartphone-based infrared imaging device to assess adequacy and level of aortic occlusion during REBOA.

Author information

From the Department of Surgery (K.K.S., G.E.B., S.B.W., K.K., S.T.M., M.J.E., M.J.M.), Madigan Army Medical Center, Tacoma, Washington; and Trauma and Acute Care Surgery Service (M.J.M.), Legacy Emanuel Medical Center, Portland, Oregon.



Advances in thermal imaging devices have made them an appealing noninvasive point-of-care imaging adjunct in the trauma setting. We sought to assess whether a smartphone-based infrared imaging device (SBIR) could determine presence and location of aortic occlusion in a swine model. We hypothesized that various levels of aortic occlusion would transmit significantly different heat signatures at various anatomical points.


Six swine (35-50 kg) underwent sequential zone 1 (Z1) aortic cross clamping as well as zone 3 (Z3) aortic balloon occlusion (resuscitative endovascular balloon occlusion of the aorta [REBOA]). SBIR images and readings (FLIR One) were taken at five anatomic points (axilla [A], subcostal [S], umbilical [U], inguinal [I], medial malleolar [M]) and were used to determine significant thermal trends 5 minutes to 10 minutes after Z1 and Z3 occlusion. Significant (p ≤ 0.05) thermal ratio patterns were identified and compared among groups, and images were reviewed for obvious qualitative differences at the various levels of occlusion.


Body temperatures were similar during control (CON), Z1 occlusion, and Z3 occlusion, ranging from 94.0 °F to 100.9 °F (p = 0.126). No significant temperature differences were found among A, S, U, I, M points prior to and after aortic occlusions. Among the anatomical 2-point ratios evaluated, A/M and S/M ratios were the best predictors of aortic occlusion, whether at Z1 (8.2 °F, p < 0.01; 10.9 °F, p < 0.01) or Z3 (7.3 °F, p < 0.01; 8.4 °F, p < 0.01), respectively. The best predictor of Z1 versus Z3 level of occlusion was the S/I ratio (5.2 °F, p < 0.05 vs. 3.4 °F, p = 0.27). SBIR generated qualitatively different thermal signatures among groups.


SBIR was capable of detecting thermal trends during Z1 and Z3 aortic occlusion by using an anatomical 2-point thermal ratio. There were also easily recognized qualitative differences between control and occlusion images that would allow immediate determination of adequate occlusion of the aorta. SBIR represents a potential inexpensive and accurate tool for assessing perfusion, adequate REBOA placement, and even the aortic level of occlusion.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wolters Kluwer
Loading ...
Support Center