Format

Send to

Choose Destination
J Am Heart Assoc. 2016 Oct 6;5(10). pii: e004028.

Downregulation of Renal G Protein-Coupled Receptor Kinase Type 4 Expression via Ultrasound-Targeted Microbubble Destruction Lowers Blood Pressure in Spontaneously Hypertensive Rats.

Author information

1
Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology & Chongqing Cardiovascular Clinical Research Center, Chongqing, China.
2
Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology & Chongqing Cardiovascular Clinical Research Center, Chongqing, China Department of Cardiology, The First Affiliated Hospital, Shantou Medical College, Shantou, China.
3
Department of Radiology, Daping Hospital, The Third Military Medical University, Chongqing, China.
4
Department of Nutrition, Daping Hospital, The Third Military Medical University, Chongqing, China yangjianac@163.com chunyuzeng01@sina.com.
5
Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology & Chongqing Cardiovascular Clinical Research Center, Chongqing, China yangjianac@163.com chunyuzeng01@sina.com.

Abstract

BACKGROUND:

G protein-coupled receptor kinase type 4 (GRK4) plays a vital role in the long-term control of blood pressure (BP) and sodium excretion by regulating renal G protein-coupled receptor phosphorylation, including dopamine type 1 receptor (D1R). Ultrasound-targeted microbubble destruction (UTMD) is a promising method for gene delivery. Whether this method can deliver GRK4 small interfering RNA (siRNA) and lower BP is not known.

METHODS AND RESULTS:

BP, 24-hour sodium excretion, and urine volume were measured after UTMD-targeted GRK4 siRNA delivery to the kidney in spontaneously hypertensive rats. The expression levels of GRK4 and D1R were determined by immunoblotting. The phosphorylation of D1R was investigated using immunoprecipitation. The present study revealed that UTMD-mediated renal GRK4 siRNA delivery efficiently reduced GRK4 expression and lowered BP in spontaneously hypertensive rats, accompanied by increased sodium excretion. The increased sodium excretion might be accounted for by the UTMD regulation of D1R phosphorylation and function in spontaneously hypertensive rats. Further analysis showed that, although UTMD had no effect on D1R expression, it reduced D1R phosphorylation in spontaneously hypertensive rats kidneys and consequently increased D1R-mediated natriuresis and diuresis.

CONCLUSIONS:

Taken together, these study results indicate that UTMD-targeted GRK4 siRNA delivery to the kidney effectively reduces D1R phosphorylation by inhibiting renal GRK4 expression, improving D1R-mediated natriuresis and diuresis, and lowering BP, which may provide a promising novel strategy for gene therapy for hypertension.

KEYWORDS:

G protein–coupled receptor kinase type 4; blood pressure; kidney; ultrasound‐targeted microbubble destruction

PMID:
27792639
PMCID:
PMC5121504
DOI:
10.1161/JAHA.116.004028
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center