Send to

Choose Destination
See comment in PubMed Commons below
J Biomech Eng. 1989 Aug;111(3):206-11.

Flow of urine through the ureter: a collapsible, muscular tube undergoing peristalsis.

Author information

Department of Applied Sciences in Medicine, University of Alberta, Edmonton, Canada.


In steady flow through nonuniform collapsible tubes a key concept is the compressive zone, at which flow limitation can occur at both high and low Reynolds numbers. Ureteral peristalsis can be considered as a series of compressive zones, corresponding to waves of active muscular contraction, that move at near-constant speed along the ureter towards the bladder. One-dimensional, lubrication-theory analysis shows that peristalsis can pump urine from kidney into the bladder only at relatively low mean rates of urine flow. Under these circumstances isolated boluses of urine are propelled steadily through the ureter (assumed uniform) by the contraction waves. At higher mean rates of flow the behavior depends on whether the frequency of peristalsis is higher or lower than a critical value. For frequencies above the critical value steady propagation of boluses that are in contact with contraction waves at both ends is possible. As the flow rate rises the urine begins to leak through the contraction waves and steady peristaltic flow breaks down. There is an upper limit to the mean flow rate that can be carried by steady peristalsis, which depends on the mechanical properties of the ureter. At high flow rates the peristaltic contractions do not pump but hinder the flow of urine through the ureter.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center