Format

Send to

Choose Destination
J Magn Reson Imaging. 2017 Jul;46(1):228-239. doi: 10.1002/jmri.25519. Epub 2016 Oct 27.

Intravoxel incoherent motion modeling in the kidneys: Comparison of mono-, bi-, and triexponential fit.

Author information

1
MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.
2
Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
3
Department of Pediatric Urology, Wilhelmina Children's Hospital, UMC Utrecht, Utrecht, The Netherlands.
4
Department of Pediatric Nephrology, Wilhelmina Children's Hospital, UMC Utrecht, Utrecht, The Netherlands.
5
Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.

Abstract

PURPOSE:

To evaluate if a three-component model correctly describes the diffusion signal in the kidney and whether it can provide complementary anatomical or physiological information about the underlying tissue.

MATERIALS AND METHODS:

Ten healthy volunteers were examined at 3T, with T2 -weighted imaging, diffusion tensor imaging (DTI), and intravoxel incoherent motion (IVIM). Diffusion tensor parameters (mean diffusivity [MD] and fractional anisotropy [FA]) were obtained by iterative weighted linear least squares fitting of the DTI data and mono-, bi-, and triexponential fit parameters (D1 , D2 , D3 , ffast2 , ffast3 , and finterm ) using a nonlinear fit of the IVIM data. Average parameters were calculated for three regions of interest (ROIs) (cortex, medulla, and rest) and from fiber tractography. Goodness of fit was assessed with adjusted R2 ( Radj2) and the Shapiro-Wilk test was used to test residuals for normality. Maps of diffusion parameters were also visually compared.

RESULTS:

Fitting the diffusion signal was feasible for all models. The three-component model was best able to describe fast signal decay at low b values (b < 50), which was most apparent in Radj2 of the ROI containing high diffusion signals (ROIrest ), which was 0.42 ± 0.14, 0.61 ± 0.11, 0.77 ± 0.09, and 0.81 ± 0.08 for DTI, one-, two-, and three-component models, respectively, and in visual comparison of the fitted and measured S0 . None of the models showed significant differences (P > 0.05) between the diffusion constant of the medulla and cortex, whereas the ffast component of the two and three-component models were significantly different (P < 0.001).

CONCLUSION:

Triexponential fitting is feasible for the diffusion signal in the kidney, and provides additional information.

LEVEL OF EVIDENCE:

2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:228-239.

KEYWORDS:

DTI; IVIM; diffusion MRI; diffusion tensor imaging; kidneys; tractography

PMID:
27787931
PMCID:
PMC5484284
DOI:
10.1002/jmri.25519
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center