Regulation of quantal currents determines synaptic strength at neuromuscular synapses in larval Drosophila

Pflugers Arch. 2016 Nov;468(11-12):2031-2040. doi: 10.1007/s00424-016-1893-7. Epub 2016 Oct 25.

Abstract

Studies of synaptic homeostasis during muscle fiber (MF) growth in Drosophila larvae have focused on the regulation of the quantal content of transmitter release. However, early studies in crayfish and frog suggested that regulation of quantal current size may be an integral mechanism in synaptic homeostasis. To examine this further in Drosophila, we compared the electrical properties, miniature excitatory postsynaptic potentials (minEPSPs) and miniature excitatory postsynaptic currents (minEPSCs) in different-sized MFs in third-instar larvae and for a single MF during larval growth. The third-instar MFs showed differences in input resistance due to differences in size and specific membrane resistance. We found that electrical coupling between MFs did not contribute substantially to the electrical properties; however, the electrode leak conductance and a slower developing increase in membrane conductance can influence the electrical recordings from these MFs. Our results demonstrated that larger MFs had larger minEPSCs to compensate for changes in MF electrical properties. This was most clearly seen for MF4 during larval growth from the second to third instar. During a predicted 80 % decrease in MF input resistance, the minEPSCs showed a 35 % increase in amplitude and 165 % increase in duration. Simulations demonstrated that the increase in minEPSC size resulted in a 129 % increase in minEPSP amplitude for third-instar larvae; this was mainly due to the increase in minEPSC duration. We also found that MFs with common innervation had similar-sized minEPSCs suggesting that MF innervation influences minEPSC size. Overall, the results showed that increased quantal content and quantal current size contribute equally to synaptic homeostasis during MF growth.

Keywords: Drosophila; Homeostasis; Neuromuscular junction; Synapse.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Drosophila / physiology
  • Excitatory Postsynaptic Potentials*
  • Homeostasis
  • Miniature Postsynaptic Potentials
  • Muscle, Skeletal / growth & development
  • Muscle, Skeletal / innervation
  • Muscle, Skeletal / physiology
  • Neuromuscular Junction / growth & development
  • Neuromuscular Junction / physiology*