Online 4D ultrasound guidance for real-time motion compensation by MLC tracking

Med Phys. 2016 Oct;43(10):5695. doi: 10.1118/1.4962932.

Abstract

Purpose: With the trend in radiotherapy moving toward dose escalation and hypofractionation, the need for highly accurate targeting increases. While MLC tracking is already being successfully used for motion compensation of moving targets in the prostate, current real-time target localization methods rely on repeated x-ray imaging and implanted fiducial markers or electromagnetic transponders rather than direct target visualization. In contrast, ultrasound imaging can yield volumetric data in real-time (3D + time = 4D) without ionizing radiation. The authors report the first results of combining these promising techniques-online 4D ultrasound guidance and MLC tracking-in a phantom.

Methods: A software framework for real-time target localization was installed directly on a 4D ultrasound station and used to detect a 2 mm spherical lead marker inside a water tank. The lead marker was rigidly attached to a motion stage programmed to reproduce nine characteristic tumor trajectories chosen from large databases (five prostate, four lung). The 3D marker position detected by ultrasound was transferred to a computer program for MLC tracking at a rate of 21.3 Hz and used for real-time MLC aperture adaption on a conventional linear accelerator. The tracking system latency was measured using sinusoidal trajectories and compensated for by applying a kernel density prediction algorithm for the lung traces. To measure geometric accuracy, static anterior and lateral conformal fields as well as a 358° arc with a 10 cm circular aperture were delivered for each trajectory. The two-dimensional (2D) geometric tracking error was measured as the difference between marker position and MLC aperture center in continuously acquired portal images. For dosimetric evaluation, VMAT treatment plans with high and low modulation were delivered to a biplanar diode array dosimeter using the same trajectories. Dose measurements with and without MLC tracking were compared to a static reference dose using 3%/3 mm and 2%/2 mm γ-tests.

Results: The overall tracking system latency was 172 ms. The mean 2D root-mean-square tracking error was 1.03 mm (0.80 mm prostate, 1.31 mm lung). MLC tracking improved the dose delivery in all cases with an overall reduction in the γ-failure rate of 91.2% (3%/3 mm) and 89.9% (2%/2 mm) compared to no motion compensation. Low modulation VMAT plans had no (3%/3 mm) or minimal (2%/2 mm) residual γ-failures while tracking reduced the γ-failure rate from 17.4% to 2.8% (3%/3 mm) and from 33.9% to 6.5% (2%/2 mm) for plans with high modulation.

Conclusions: Real-time 4D ultrasound tracking was successfully integrated with online MLC tracking for the first time. The developed framework showed an accuracy and latency comparable with other MLC tracking methods while holding the potential to measure and adapt to target motion, including rotation and deformation, noninvasively.

MeSH terms

  • Feasibility Studies
  • Humans
  • Imaging, Three-Dimensional*
  • Movement*
  • Radiometry
  • Radiotherapy Planning, Computer-Assisted
  • Radiotherapy, Image-Guided / instrumentation
  • Radiotherapy, Image-Guided / methods*
  • Time Factors
  • Ultrasonography