Format

Send to

Choose Destination
Biomed Mater. 2016 Oct 21;11(6):065002.

Development and fabrication of a two-layer tissue engineered osteochondral composite using hybrid hydrogel-cancellous bone scaffolds in a spinner flask.

Author information

1
State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China. Author to whom any correspondence should be addressed. State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering of Dalian University of Technology, Dalian 116024, People's Republic of China.

Abstract

Biological treatment using engineered osteochondral composites has received growing attention for the repair of cartilage defects. Osteochondral composites combined with a dynamic culture provide great potential for improving the quality of constructs and cartilage regeneration as dynamic conditions mimic the in vivo condition where cells were constantly subjected to mechanical and chemical stimulation. In the present study, biophasic composites were produced in vitro consisting of cell-hydrogel (CH) and cell-cancellous bone (CB) constructs, followed by culturing in a dynamic system in a spinner flask. The aim of this study was to investigate cell behaviors (i.e. cell growth, differentiation, distribution and matrix deposition) cultured in different constructs under static and dynamic circumstances. As a result, we found that mechanical stimulation promoted osteogenic and chondrogenic differentiation of cells as indicated by the increased expression of ALP and glycosaminoglycan (GAG) in either bone or cartilage substitute materials. Dynamic culture yielded a preferable extracellular matrix production, particularly in hydrogel scaffolds. In addition, the enhanced mass transfer contributed to the interface formation, cells infiltration and distribution in the osteochondral composites. This study demonstrates that osteochondral composites incorporated with a dynamic culture improved the performance of the constructs, providing the basis for a promising tool and a better strategy for the rapid fabrication of osteochondral substitutes and regeneration of injured cartilage.

PMID:
27767021
DOI:
10.1088/1748-6041/11/6/065002
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for IOP Publishing Ltd.
Loading ...
Support Center