Format

Send to

Choose Destination
Cell Motil Cytoskeleton. 1989;13(4):264-73.

Reproductive capacity of sea urchin centrosomes without centrioles.

Author information

1
Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545.

Abstract

For animal cells, the relative roles of the centrioles and the pericentriolar material (the centrosomal microtubule organizing center) in controlling the precise doubling of the centrosome before mitosis have not been well defined. To this end we devised an experimental system that allowed us to characterize the capacity of the centrosomal microtubule organizing center to double regularly in the absence of centrioles. Sea urchin eggs were fertilized, stripped of their fertilization envelopes, and fragmented before syngamy. Those activated egg fragments containing just the female pronucleus assembled a monaster at first mitosis. A serial section ultrastructural analysis of such monasters revealed that the radially arrayed microtubules were organized by a hollow fenestrated sphere of electron-dense material, of the same appearance as pericentriolar material, that was devoid of centrioles. We followed individual fragments with only a female pronucleus through at least three cell cycles and found that the monasters did not double between mitoses. The observation that fragments with only a male pronucleus repeatedly divided in a normal fashion indicates that the assembly and behavior of monasters were not artifacts of egg fragmentation. Our results demonstrate that the activity that controls the precise doubling of the centrosome before mitosis is distinct and experimentally separable from the centrosomal microtubule organizing center. Our observations also extend the correlation between the reproductive capacity of a centrosome and the number of centrioles it contains (G Sluder and CL Rieder, 1985a: J. Cell Biol. 100:887-896). For a cell that normally has centrioles, we show that a centrosome without centrioles does not reproduce between mitoses.

PMID:
2776224
DOI:
10.1002/cm.970130405
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center