Format

Send to

Choose Destination
Glob Chang Biol. 2017 Apr;23(4):1675-1690. doi: 10.1111/gcb.13535. Epub 2016 Nov 12.

A synthesis of radial growth patterns preceding tree mortality.

Author information

1
Forest Ecology, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Universitätstrasse 22, 8092, Zürich, Switzerland.
2
Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
3
CREAF, Campus UAB, 08193, Cerdanyola del Vallès, Spain.
4
Laboratory of Plant Biology and Nature Management (APNA), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
5
Laboratory of Wood Biology and Xylarium, Royal Museum for Central Africa (RMCA), Leuvensesteenweg 13, 3080, Tervuren, Belgium.
6
Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
7
Department of Forest Sciences, University of Helsinki, P.O. Box 27 (Latokartanonkaari 7), 00014, Helsinki, Finland.
8
Department of Biology, University of Victoria, PO Box 3020, STN CSC, Victoria, BC, V8W 3N5, Canada.
9
Institute of Botany, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria.
10
Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133, Milano, Italy.
11
Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 961/129, 165 21, Praha 6-Suchdol, Czech Republic.
12
Instituto Pirenaico de Ecología (IPE-CSIC), Avenida Montañana 1005, 50192, Zaragoza, Spain.
13
Swiss Federal Institute for Forest, Snow and Landscape Research - WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland.
14
Unité Mixte de Recherche (UMR) 547 PIAF, Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne, 63100, Clermont-Ferrand, France.
15
Département des sciences du bois et de la forêt, Centre for Forest Research, Faculté de foresterie, de géographie et de géomatique, Université Laval, 2405 rue de la Terrasse, Québec, QC, G1V 0A6, Canada.
16
Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
17
U.S. Geological Survey, Western Ecological Research Center, 47050 Generals Highway, Three Rivers, CA, 93271, USA.
18
Ecologie des Forest Méditerranéennes (URFM), Institut National de la Recherche Agronomique (INRA), Domaine Saint Paul, Site Agroparc, 84914, Avignon Cedex 9, France.
19
Unité Mixte de Recherche (UMR) 1202 BIOGECO, Institut National de la Recherche Agronomique (INRA), Université de Bordeaux, 33615, Pessac, France.
20
Department of Geography and Environmental Development, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.
21
Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera La Coruña km 7.5, 28040, Madrid, Spain.
22
Institute of Forest Botany and Forest Zoology, TU Dresden, 01062, Dresden, Germany.
23
Fachgebiet Vegetationstechnik und Pflanzenverwendung, Institut für Landschaftsarchitektur und Umweltplanung, TU Berlin, 10623, Berlin, Germany.
24
Department of Entomology, University of Arkansas, Fayetteville, AR, 72701, USA.
25
Department of Ecology and Evolutionary Biology, University of Kansas, 1450 Jayhawk Boulevard, Lawrence, KS, 66045, USA.
26
Max-Planck Institute for Biogeochemistry, Hans Knöll Strasse 10, 07745, Jena, Germany.
27
Department of Biogeography and Global Change, National Museum of Natural History (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), C/Serrano 115bis, 28006, Madrid, Spain.
28
Department of Research, Conservation and Collections, Desert Botanical Garden, 1201 N Galvin Parkway, Phoenix, AZ, USA.
29
Department of Forestry and Wildland Resources, Humboldt State University, 1 Harpst Street, Arcata, CA, 95521, USA.
30
Siberian Division of the Russian Academy of Sciences (RAS), Sukachev Institute of Forest, Krasnoyarsk, 660036, Russia.
31
Department of Ecology, Universidad Nacional del Comahue, Quintral S/N, Barrio Jardín Botánico, 8400, San Carlos de Bariloche, Río Negro, Argentina.
32
Instituto de Investigaciones de Biodiversidad y Medio Ambiente (INIBOMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina.
33
Institute of Soil, Water, and Environmental Sciences, Volcani Center, Agricultural Research Organization (ARO), PO Box 6, 50250, Beit Dagan, Israel.
34
Alterra - Green World Research, Wageningen University, Droevendaalse steeg 1, 6700AA, Wageningen, The Netherlands.
35
Naturalis Biodiversity Center, Leiden University, PO Box 9517, 2300RA, Leiden, The Netherlands.
36
Department of Yield and Silviculture, Slovenian Forestry Institute, Večna pot 2, 1000, Ljubljana, Slovenia.
37
Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, Carretera de Utrera km 1, 41013, Seville, Spain.
38
Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.
39
Forest Research Centre, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
40
Department of Agricultural Science, Mediterranean University of Reggio Calabria, loc. Feo di Vito, 89060, Reggio Calabria, Italy.
41
Forest Genetics and Physiology Research Group, Technical University of Madrid, Calle Ramiro de Maeztu 7, 28040, Madrid, Spain.
42
Hawkesbury Institute for the Environment, University of Western Sydney, Science Road, Richmond, NSW, 2753, Australia.
43
Natural Resources Institute Finland (Luke), Viikinkaari 4, 00790, Helsinki, Finland.
44
Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.
45
Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, 5320-122nd Street, Edmonton, AB, T6H 3S5, Canada.
46
Department of Forestry and Natural Environment Management, Technological Educational Institute (TEI) of Stereas Elladas, Ag Georgiou 1, 36100, Karpenissi, Greece.
47
Natural Resources Institute Finland (Luke), PO Box 18 (Jokiniemenkuja 1), 01301, Vantaa, Finland.
48
National Institute for Research-Development in Forestry ''Marin Dracea'', Eroilor 128, 077190, Voluntari, Romania.
49
Faculty of Pure and Applied Sciences, Open University of Cyprus, Latsia, 2252, Nicosia, Cyprus.
50
Department of Biological Sciences, University of Cyprus, PO Box 20537, 1678, Nicosia, Cyprus.
51
Division of Plant Biology, Department of Biology, University of Patras, 26500, Patras, Greece.
52
Department of Geography, University of Colorado, Boulder, CO, 80309-0260, USA.
53
Department of Geography, Planning and Recreation, Northern Arizona University, PO Box 15016, Flagstaff, AZ, 86011, USA.
54
Forest Ecology and Forest Management Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB, Wageningen, The Netherlands.
55
Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Cehova 13, PO Box 117, 21000, Novi Sad, Serbia.
56
Dipartimenti di Bioscienze e Territorio, Università del Molise, C. da Fonte Lappone, 86090, Pesche, Italy.
57
European Forest Institute (EFI) Project Centre on Mountain Forests (MOUNTFOR), Via E. Mach 1, 38010, San Michele all'Adige, Italy.
58
Laboratorio de Dendrocronología e Historia Ambiental, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT CONICET Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, Mendoza, CP 5500, Argentina.
59
Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51014, Tartu, Estonia.
60
Boreal Avian Modelling Project, Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, AB, T6G 2H1, Canada.
61
University of Minnesota, 600 East 4th Street, Morris, MN, 56267, USA.
62
University of Forestry, Kliment Ohridski Street 10, 1756, Sofia, Bulgaria.

Abstract

Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1-100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were found for gymnosperms, shade- and drought-tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or bark-beetle outbreaks.

KEYWORDS:

angiosperms; death; drought; growth; gymnosperms; pathogens; ring-width; tree mortality

PMID:
27759919
DOI:
10.1111/gcb.13535
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center