Format

Send to

Choose Destination
Plant Physiol. 2016 Dec;172(4):2204-2218. Epub 2016 Oct 17.

DEFECTIVE KERNEL1 (DEK1) Regulates Cell Walls in the Leaf Epidermis.

Author information

1
Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (D.A., M.S.D., A.B., K.L.J.); and.
2
Laboratoire Reproduction et Développement des Plantes, Université de Lyon, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5667, Institut National de la Recherche Agronomique Unité Mixte de Recherche 0879, Ecole Normale Supérieure de Lyon, Lyon F-69342, France (R.G., G.C.I.).
3
Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (D.A., M.S.D., A.B., K.L.J.); and kim.johnson@unimelb.edu.au.
4
Laboratoire Reproduction et Développement des Plantes, Université de Lyon, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5667, Institut National de la Recherche Agronomique Unité Mixte de Recherche 0879, Ecole Normale Supérieure de Lyon, Lyon F-69342, France (R.G., G.C.I.) kim.johnson@unimelb.edu.au.

Abstract

The plant epidermis is crucial to survival, regulating interactions with the environment and controlling plant growth. The phytocalpain DEFECTIVE KERNEL1 (DEK1) is a master regulator of epidermal differentiation and maintenance, acting upstream of epidermis-specific transcription factors, and is required for correct cell adhesion. It is currently unclear how changes in DEK1 lead to cellular defects in the epidermis and the pathways through which DEK1 acts. We have combined growth kinematic studies, cell wall analysis, and transcriptional analysis of genes downstream of DEK1 to determine the cause of phenotypic changes observed in DEK1-modulated lines of Arabidopsis (Arabidopsis thaliana). We reveal a novel role for DEK1 in the regulation of leaf epidermal cell wall structure. Lines with altered DEK1 activity have epidermis-specific changes in the thickness and polysaccharide composition of cell walls that likely underlie the loss of adhesion between epidermal cells in plants with reduced levels of DEK1 and changes in leaf shape and size in plants constitutively overexpressing the active CALPAIN domain of DEK1. Calpain-overexpressing plants also have increased levels of cellulose and pectins in epidermal cell walls, and this is correlated with the expression of several cell wall-related genes, linking transcriptional regulation downstream of DEK1 with cellular effects. These findings significantly advance our understanding of the role of the epidermal cell walls in growth regulation and establish a new role for DEK1 in pathways regulating epidermal cell wall deposition and remodeling.

PMID:
27756823
PMCID:
PMC5129726
DOI:
10.1104/pp.16.01401
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center