Complete Reversion of Cardiac Functional Adaptation Induced by Exercise Training

Med Sci Sports Exerc. 2017 Mar;49(3):420-429. doi: 10.1249/MSS.0000000000001127.

Abstract

Purpose: Long-term exercise training is associated with characteristic cardiac adaptation, termed athlete's heart. Our research group previously characterized in vivo left ventricular (LV) function of exercise-induced cardiac hypertrophy in detail in a rat model; however, the effect of detraining on LV function is still unclear. We aimed at evaluating the reversibility of functional alterations of athlete's heart after detraining.

Methods: Rats (n = 16) were divided into detrained exercised (DEx) and detrained control (DCo) groups. Trained rats swam 200 min·d for 12 wk, and control rats were taken into water for 5 min·d. After the training period, both groups remained sedentary for 8 wk. We performed echocardiography at weeks 12 and 20 to investigate the development and regression of exercise-induced structural changes. LV pressure-volume analysis was performed to calculate cardiac functional parameters. LV samples were harvested for histological examination.

Results: Echocardiography showed robust LV hypertrophy after completing the training protocol (LV mass index = 2.61 ± 0.08 DEx vs 2.04 ± 0.04 g·kg DCo, P < 0.05). This adaptation regressed after detraining (LV mass index = 2.01 ± 0.03 vs 1.97 ± 0.05 g·kg, n.s.), which was confirmed by postmortem measured heart weight and histological morphometry. After the 8-wk-long detraining period, a regression of the previously described exercise-induced cardiac functional alterations was observed (DEx vs DCo): stroke volume (SV; 144.8 ± 9.0 vs 143.9 ± 9.6 μL, P = 0.949), active relaxation (τ = 11.5 ± 0.3 vs 11.3 ± 0.4 ms, P = 0.760), contractility (preload recruitable stroke work = 69.5 ± 2.7 vs 70.9 ± 2.4 mm Hg, P = 0.709), and mechanoenergetic (mechanical efficiency = 68.7 ± 1.2 vs 69.4 ± 1.8, P = 0.742) enhancement reverted completely to control values. Myocardial stiffness remained unchanged; moreover, no fibrosis was observed after the detraining period.

Conclusion: Functional consequences of exercise-induced physiological LV hypertrophy completely regressed after 8 wk of deconditioning.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological*
  • Animals
  • Echocardiography
  • Heart / anatomy & histology
  • Heart / diagnostic imaging
  • Heart / physiology
  • Hemodynamics
  • Humans
  • Male
  • Models, Animal
  • Myocardial Contraction / physiology
  • Physical Conditioning, Animal*
  • Rats, Wistar
  • Time Factors
  • Ventricular Function, Left / physiology*