Format

Send to

Choose Destination
mSphere. 2016 Sep 28;1(5). pii: e00250-16. eCollection 2016 Sep-Oct.

Different Regulations of ROM2 and LRG1 Expression by Ccr4, Pop2, and Dhh1 in the Saccharomyces cerevisiae Cell Wall Integrity Pathway.

Author information

1
Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.

Abstract

Ccr4, a component of the Ccr4-Not cytoplasmic deadenylase complex, is known to be required for the cell wall integrity (CWI) pathway in the budding yeast Saccharomyces cerevisiae. However, it is not fully understood how Ccr4 and other components of the Ccr4-Not complex regulate the CWI pathway. Previously, we showed that Ccr4 functions in the CWI pathway together with Khd1 RNA binding protein. Ccr4 and Khd1 modulate a signal from Rho1 small GTPase in the CWI pathway by regulating the expression of ROM2 mRNA and LRG1 mRNA, encoding a guanine nucleotide exchange factor (GEF) and a GTPase-activating protein (GAP) for Rho1, respectively. Here we examined the possible involvement of the POP2 gene encoding a subunit of the Ccr4-Not complex and the DHH1 gene encoding a DEAD box RNA helicase that associates with the Ccr4-Not complex in the regulation of ROM2 and LRG1 expression. Neither ROM2 mRNA level nor Rom2 function was impaired by pop2Δ or dhh1Δ mutation. The LRG1 mRNA level was increased in pop2Δ and dhh1Δ mutants, as well as the ccr4Δ mutant, and the growth defects caused by pop2Δ and dhh1Δ mutations were suppressed by lrg1Δ mutation. Our results suggest that LRG1 expression is regulated by Ccr4 together with Pop2 and Dhh1 and that ROM2 expression is regulated by Khd1 and Ccr4, but not by Pop2 and Dhh1. Thus, Rho1 activity in the CWI pathway is precisely controlled by modulation of the mRNA levels for Rho1-GEF Rom2 and Rho1-GAP Lrg1. IMPORTANCE We find here that Ccr4, Pop2, and Dhh1 modulate the levels of mRNAs for specific Rho1 regulators, Rom2 and Lrg1. In budding yeast, Rho1 activity is tightly regulated both temporally and spatially. It is anticipated that Ccr4, Pop2, and Dhh1 may contribute to the precise spatiotemporal control of Rho1 activity by regulating expression of its regulators temporally and spatially. Our finding on the roles of the components of the Ccr4-Not complex in yeast would give important information for understanding the roles of the evolutionary conserved Ccr4-Not complex.

KEYWORDS:

Ccr4-Not complex; Rho1; cell wall; mRNA stability; yeasts

Supplemental Content

Full text links

Icon for American Society for Microbiology Icon for PubMed Central
Loading ...
Support Center