Format

Send to

Choose Destination
Psychiatry Res Neuroimaging. 2016 Oct 30;256:44-49. doi: 10.1016/j.pscychresns.2016.09.007. Epub 2016 Sep 20.

Altered neurotransmitter metabolism in adolescents with high-functioning autism.

Author information

1
Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands.
2
Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Behavioral Sciences, Epilepsy Center Kempenhaeghe, Heeze, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
3
Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Behavioral Sciences, Epilepsy Center Kempenhaeghe, Heeze, The Netherlands.
4
School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Behavioral Sciences, Epilepsy Center Kempenhaeghe, Heeze, The Netherlands.
5
Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
6
Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Behavioral Sciences, Epilepsy Center Kempenhaeghe, Heeze, The Netherlands.
7
Special Education School de Berkenschutse, Sterkselseweg 65, 5591 VE Heeze, The Netherlands.
8
Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands; Department of Behavioral Sciences, Epilepsy Center Kempenhaeghe, Heeze, The Netherlands.
9
Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands; Department of Medical Psychology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
10
School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands. Electronic address: Jacobus.jansen@mumc.nl.

Abstract

Previous studies have suggested that alterations in excitatory/inhibitory neurotransmitters might play a crucial role in autism spectrum disorder (ASD). Proton magnetic resonance spectroscopy (1H-MRS) can provide valuable information about abnormal brain metabolism and neurotransmitter concentrations. However, few 1H-MRS studies have been published on the imbalance of the two most abundant neurotransmitters in ASD: glutamate (Glu) and gamma-aminobutyric acid (GABA). Moreover, to our knowledge none of these published studies is performed with a study population consisting purely of high-functioning autism (HFA) adolescents. Selecting only individuals with HFA eliminates factors possibly related to intellectual impairment instead of ASD. This study aims to assess Glu and GABA neurotransmitter concentrations in HFA. Occipital concentrations of Glu and GABA plus macromolecules (GABA+) were obtained using 1H-MRS relative to creatine (Cr) in adolescents with HFA (n=15 and n=13 respectively) and a healthy control group (n=17). Multiple linear regression revealed significantly higher Glu/Cr and lower GABA+/Glu concentrations in the HFA group compared to the controls. These results imply that imbalanced neurotransmitter levels of excitation and inhibition are associated with HFA in adolescents.

KEYWORDS:

Gamma-aminobutyric acid; Glutamate; Magnetic resonance spectroscopy

PMID:
27685800
PMCID:
PMC5385138
DOI:
10.1016/j.pscychresns.2016.09.007
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center