Comparison of Solvation Effects on CO2 Capture with Aqueous Amine Solutions and Amine-Functionalized Ionic Liquids

J Phys Chem B. 2016 Oct 13;120(40):10563-10568. doi: 10.1021/acs.jpcb.6b07860. Epub 2016 Sep 30.

Abstract

Amines are the most widely utilized chemicals for postcombustion CO2 capture, because the reversible reactions between amines and CO2 through their moderate interaction allow effective "catch and release". Usually, CO2 is dissolved in the form of an anion such as carbamate or bicarbonate. Therefore, the reaction energy diagram is potentially governed to a large extent by the polarity of the surrounding solvent. Herein, we compared aqueous amine solutions and amine-functionalized ionic liquids by investigating their dielectric constants and performing an intrinsic reaction coordinate analysis of the CO2 absorption process. Quantum mechanical calculations at the CCSD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p) level within the continuum solvation model (SMD/IEF-PCM) revealed contrasting dependencies of C-N bond formation on the dielectric constant in those solutions. Amines react with CO2 on an energy surface that is significantly affected by the dielectric constant in conventional aqueous amine solutions, whereas amine-functionalized anions and CO2 form stable C-N bonds with a comparatively lower activation energy regardless of the dielectric constant.

Publication types

  • Research Support, Non-U.S. Gov't