Format

Send to

Choose Destination
Antimicrob Agents Chemother. 2016 Nov 21;60(12):7170-7177. Print 2016 Dec.

Endosomal Trafficking Defects Can Induce Calcium-Dependent Azole Tolerance in Candida albicans.

Author information

1
Department of Clinical Pharmacy, Division of Clinical and Experimental Therapeutics, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA.
2
Department of Clinical Pharmacy, Division of Clinical and Experimental Therapeutics, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA gpalmer5@uthsc.edu.

Abstract

The azole antifungals arrest fungal growth through inhibition of ergosterol biosynthesis. We recently reported that a Candida albicans vps21Δ/Δ mutant, deficient in membrane trafficking through the late endosome/prevacuolar compartment (PVC), continues to grow in the presence of the azoles despite the depletion of cellular ergosterol. Here, we report that the vps21Δ/Δ mutant exhibits less plasma membrane damage upon azole treatment than the wild type, as measured by the release of a cytoplasmic luciferase reporter into the culture supernatant. Our results also reveal that the vps21Δ/Δ mutant has abnormal levels of intracellular Ca2+ and, in the presence of fluconazole, enhanced expression of a calcineurin-responsive RTA2-GFP reporter. Furthermore, the azole tolerance phenotype of the vps21Δ/Δ mutant is dependent upon both extracellular calcium levels and calcineurin activity. These findings underscore the importance of endosomal trafficking in determining the cellular consequences of azole treatment and indicate that this may occur through modulation of calcium- and calcineurin-dependent responses.

PMID:
27645241
PMCID:
PMC5118996
DOI:
10.1128/AAC.01034-16
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center