Format

Send to

Choose Destination
Asian J Sports Med. 2016 May 11;7(2):e31248. doi: 10.5812/asjsm.31248. eCollection 2016 Jun.

Knee Muscular Control During Jump Landing in Multidirections.

Author information

1
Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand.
2
College of Sports Science and Technology, Mahidol University, Nakhon Pathom, Thailand.

Abstract

BACKGROUND:

Jump landing is a complex movement in sports. While competing and practicing, athletes frequently perform multi-planar jump landing. Anticipatory muscle activity could influence the amount of knee flexion and prepare the knee for dynamic weight bearing such as landing tasks.

OBJECTIVES:

The aim of the present study was to examine knee muscle function and knee flexion excursion as athletes naturally performed multi-direction jump landing.

MATERIALS AND METHODS:

Eighteen male athletes performed the jump-landing test in four directions: forward (0°), 30° diagonal, 60° diagonal, and lateral (90°). Muscles tested were vastus medialis (VM), vastus lateralis (VL), rectus femoris (RF), semitendinosus (ST), and biceps femoris (BF). A Vicon(TM) 612 workstation collected the kinematic data. An electromyography was synchronized with the Vicon(TM) Motion system to quantify dynamic muscle function. Repeated measure ANOVA was used to analyze the data.

RESULTS:

Jump-landing direction significantly influenced (P < 0.05) muscle activities of VL, RF, and ST and knee flexion excursion. Jumpers landed with a trend of decreasing knee flexion excursion and ST muscle activity 100 ms before foot contact progressively from forward to lateral directions of jump landing.

CONCLUSIONS:

A higher risk of knee injury might occur during lateral jump landing than forward and diagonal directions. Athletes should have more practice in jump landing in lateral direction to avoid injury. Landing technique with high knee flexion in multi-directions should be taught to jumpers for knee injury prevention.

KEYWORDS:

Direction; Jump Landing; Knee Flexion Excursion; Muscle Activity

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center