Format

Send to

Choose Destination
Sci Rep. 2016 Sep 14;6:33396. doi: 10.1038/srep33396.

The Crystal Structure of Peroxiredoxin Asp f3 Provides Mechanistic Insight into Oxidative Stress Resistance and Virulence of Aspergillus fumigatus.

Author information

1
Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institut, Beutenbergstrasse 11a, D-07745 Jena, Germany.
2
Department of Molecular Immunology, The Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.
3
Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institut, Beutenbergstrasse 11a, D-07745 Jena, Germany.
4
Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institut, Beutenbergstrasse 11a, D-07745 Jena, Germany.
5
Department of Molecular Medicine, The Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.
6
Institute of Microbiology, Friedrich Schiller University Jena, D-07743 Jena, Germany.

Abstract

Invasive aspergillosis and other fungal infections occur in immunocompromised individuals, including patients who received blood-building stem cell transplants, patients with chronic granulomatous disease (CGD), and others. Production of reactive oxygen species (ROS) by immune cells, which incidentally is defective in CGD patients, is considered to be a fundamental process in inflammation and antifungal immune response. Here we show that the peroxiredoxin Asp f3 of Aspergillus fumigatus inactivates ROS. We report the crystal structure and the catalytic mechanism of Asp f3, a two-cysteine type peroxiredoxin. The latter exhibits a thioredoxin fold and a homodimeric structure with two intermolecular disulfide bonds in its oxidized state. Replacement of the Asp f3 cysteines with serine residues retained its dimeric structure, but diminished Asp f3's peroxidase activity, and extended the alpha-helix with the former peroxidatic cysteine residue C61 by six residues. The asp f3 deletion mutant was sensitive to ROS, and this phenotype was rescued by ectopic expression of Asp f3. Furthermore, we showed that deletion of asp f3 rendered A. fumigatus avirulent in a mouse model of pulmonary aspergillosis. The conserved expression of Asp f3 homologs in medically relevant molds and yeasts prompts future evaluation of Asp f3 as a potential therapeutic target.

PMID:
27624005
PMCID:
PMC5022050
DOI:
10.1038/srep33396
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center