Format

Send to

Choose Destination
J Bacteriol. 2016 Nov 4;198(23):3142-3151. Print 2016 Dec 1.

Spontaneous Reversions of an Evolutionary Trait Loss Reveal Regulators of a Small RNA That Controls Multicellular Development in Myxobacteria.

Author information

1
Institute for Integrative Biology, ETH Zurich, Zurich, Switzerland nicco.yu@env.ethz.ch.
2
Department of Biology, Indiana University, Bloomington, Indiana, USA.
3
Department of Geoscience, University of Calgary, Calgary, Canada.
4
Institute for Integrative Biology, ETH Zurich, Zurich, Switzerland.

Abstract

Lost traits can reevolve, but the probability of trait reversion depends partly on a trait's genetic complexity. Myxobacterial fruiting body development is a complex trait controlled by the small RNA (sRNA) Pxr, which blocks development under conditions of nutrient abundance. In developmentally proficient strains of Myxococcus xanthus, starvation relaxes the inhibition by Pxr, thereby allowing development to proceed. In contrast, the lab-evolved strain OC does not develop because it fails to relay an early starvation signal that alleviates inhibition by Pxr. A descendant of OC, strain PX, previously reevolved developmental proficiency via a mutation in pxr that inactivates its function. A single-colony screen was used to test whether reversion of OC to developmental proficiency occurs only by mutation of pxr or might also occur through alternative regulatory loci. Five spontaneous mutants of OC that exhibited restored development were isolated, and all five showed defects in Pxr synthesis, structure, or processing, including one that incurred an eight-nucleotide deletion in pxr Two mutations occurred in the σ54 response regulator (RR) gene MXAN_1078 (named pxrR here), immediately upstream of pxr PxrR was found to positively regulate pxr transcription, presumably via the σ54 promoter of pxr Two other mutations were identified in a histidine kinase (HK) gene (MXAN_1077; named pxrK here) immediately upstream of pxrR Evolutionarily, the rate of trait restoration documented in this study suggests that reversion of social defects in natural microbial populations may be common. Molecularly, these results suggest a mechanism by which the regulatory functions of an HK-RR two-component signaling system and an sRNA are integrated to control initiation of myxobacterial development.

IMPORTANCE:

Many myxobacteria initiate a process of multicellular fruiting body development upon starvation, but key features of the regulatory network controlling the transition from growth to development remain obscure. Previous work with Myxococcus xanthus identified the first small RNA (sRNA) regulator (Pxr) known to serve as a gatekeeper in this life history transition, as it blocks development when nutrients are abundant. In the present study, a screen for spontaneous mutants of M. xanthus was developed that revealed a two-component system operon (encoding a histidine kinase and a σ54 response regulator) associated with the production and processing of Pxr sRNA. This discovery broadens our knowledge of early developmental gene regulation and also represents an evolutionary integration of two-component signaling and sRNA gene regulation to control a bacterial social trait.

PMID:
27621281
PMCID:
PMC5105895
DOI:
10.1128/JB.00389-16
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center