Format

Send to

Choose Destination
Drug Resist Updat. 2016 Sep;28:82-90. doi: 10.1016/j.drup.2016.07.003. Epub 2016 Jul 30.

Antibiotic resistance in Burkholderia species.

Author information

1
Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute and Institute for Therapeutic Innovation, University of Florida, Gainesville, FL, USA; Department of Microbiology Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
2
Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute and Institute for Therapeutic Innovation, University of Florida, Gainesville, FL, USA. Electronic address: hschweizer@ufl.edu.

Abstract

The genus Burkholderia comprises metabolically diverse and adaptable Gram-negative bacteria, which thrive in often adversarial environments. A few members of the genus are prominent opportunistic pathogens. These include Burkholderia mallei and Burkholderia pseudomallei of the B. pseudomallei complex, which cause glanders and melioidosis, respectively. Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia vietnamiensis belong to the Burkholderia cepacia complex and affect mostly cystic fibrosis patients. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. The first line of defense against antimicrobials in Burkholderia species is the outer membrane penetration barrier. Most Burkholderia contain a modified lipopolysaccharide that causes intrinsic polymyxin resistance. Contributing to reduced drug penetration are restrictive porin proteins. Efflux pumps of the resistance nodulation cell division family are major players in Burkholderia multidrug resistance. Third and fourth generation β-lactam antibiotics are seminal for treatment of Burkholderia infections, but therapeutic efficacy is compromised by expression of several β-lactamases and ceftazidime target mutations. Altered DNA gyrase and dihydrofolate reductase targets cause fluoroquinolone and trimethoprim resistance, respectively. Although antibiotic resistance hampers therapy of Burkholderia infections, the characterization of resistance mechanisms lags behind other non-enteric Gram-negative pathogens, especially ESKAPE bacteria such as Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa.

KEYWORDS:

Antibiotics resistance; Burkholderia; Burkholderia cepacia complex; Glanders; Melioidosis

PMID:
27620956
PMCID:
PMC5022785
DOI:
10.1016/j.drup.2016.07.003
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center