Format

Send to

Choose Destination
Curr Biol. 2016 Sep 26;26(18):2543-2549. doi: 10.1016/j.cub.2016.07.036. Epub 2016 Sep 8.

Multi-locus Analyses Reveal Four Giraffe Species Instead of One.

Author information

1
Giraffe Conservation Foundation, PO Box 86099, Windhoek, Namibia.
2
Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany.
3
Wildlife Conservation Society, Bronx Zoo, 2300 Southern Blvd., Bronx, NY 10460, USA.
4
Museum of Zoology, Senckenberg Dresden, Königsbrücker Landstrasse 159, 01109 Dresden, Germany.
5
Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Institute for Ecology, Evolution & Diversity, Goethe University, Max-von-Laue-Strasse 13, 60439 Frankfurt am Main, Germany. Electronic address: axel.janke@senckenberg.de.

Abstract

Traditionally, one giraffe species and up to eleven subspecies have been recognized [1]; however, nine subspecies are commonly accepted [2]. Even after a century of research, the distinctness of each giraffe subspecies remains unclear, and the genetic variation across their distribution range has been incompletely explored. Recent genetic studies on mtDNA have shown reciprocal monophyly of the matrilines among seven of the nine assumed subspecies [3, 4]. Moreover, until now, genetic analyses have not been applied to biparentally inherited sequence data and did not include data from all nine giraffe subspecies. We sampled natural giraffe populations from across their range in Africa, and for the first time individuals from the nominate subspecies, the Nubian giraffe, Giraffa camelopardalis camelopardalis Linnaeus 1758 [5], were included in a genetic analysis. Coalescence-based multi-locus and population genetic analyses identify at least four separate and monophyletic clades, which should be recognized as four distinct giraffe species under the genetic isolation criterion. Analyses of 190 individuals from maternal and biparental markers support these findings and further suggest subsuming Rothschild's giraffe into the Nubian giraffe, as well as Thornicroft's giraffe into the Masai giraffe [6]. A giraffe survey genome produced valuable data from microsatellites, mobile genetic elements, and accurate divergence time estimates. Our findings provide the most inclusive analysis of giraffe relationships to date and show that their genetic complexity has been underestimated, highlighting the need for greater conservation efforts for the world's tallest mammal.

PMID:
27618261
DOI:
10.1016/j.cub.2016.07.036
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center