Send to

Choose Destination
PeerJ. 2016 Aug 11;4:e2317. doi: 10.7717/peerj.2317. eCollection 2016.

Transcriptional activation of muscle atrophy promotes cardiac muscle remodeling during mammalian hibernation.

Author information

Institute of Biochemistry and Department of Biology, Carleton University , Ottawa , ON , Canada.



Mammalian hibernation in thirteen-lined ground squirrels (Ictidomys tridecemlineatus) is characterized by dramatic changes on a physiological and molecular level. During hibernation, mammalian hearts show a propensity to hypertrophy due to the need for increasing contractility to pump colder and more viscous blood. While cardiac hypertrophy is quite often a process characterized by decompensation, the ground squirrel studied is an excellent model of cardiac plasticity and cardioprotection under conditions of hypothermia and ischemia. The forkhead box O (Foxo) family of proteins and myogenin (MyoG) are transcription factors that control protein degradation and muscle atrophy by regulating the expression of the E3 ubiquitin ligases, MAFbx and MuRF1. These ligases are part of the ubiquitin proteasome system by transferring ubiquitin to proteins and targeting these proteins for degradation. Regulation of Foxo1 and 3a occurs through phosphorylation at different residues. The threonine-24 (Thr-24) and serine-319 (Ser-319) residues on Foxo1, and the Thr-32 residue on Foxo3a are phosphorylated by Akt, leading to cytoplasmic localization of Foxo. We propose that the described mechanism contributes to the changes taking place in cardiac muscle throughout hibernation.


Total and phosphorylated protein levels of Foxo1 and Foxo3a, as well as total protein levels of MyoG, MAFbx, and MuRF1, were studied using immunoblotting.


Immunoblotting results demonstrated upregulations in Foxo1 and Foxo3a total protein levels (1.3- and 4.5-fold increases relative to euthermic control, for Foxo1 and 3a respectively) during late torpor, and protein levels remained elevated throughout the rest of torpor and at interbout arousal. We also observed decreases in inactive, phosphorylated Foxo1 and 3a proteins during throughout torpor, where levels of p-Foxo1 Ser(319) and Thr(24), as well as p-Foxo3a Thr(32) decreased by at least 45% throughout torpor. MyoG was upregulated only during late torpor by 2.4-fold. Protein levels of MAFbx and MuRF1 increased in late torpor as well as during early arousal by as much as 2.8-fold, and MAFbx levels remained elevated during interbout arousal, whereas MuRF1 levels returned to control levels.


The present results indicate that upregulation and activation of Foxo1 and 3a, in addition to the increase in MyoG levels at late torpor, may be upregulating the expression of MAFbx and MuRF1. These findings suggest that there is activation of the ubiquitin proteasome system (UPS) as ground squirrels arouse from torpor. Therefore, the signalling pathway involving MyoG, and the E3 ligases MAFbx and MuRF1, plays a significant role in cardiac muscle remodelling during hibernation. These findings provide insights into the regulation of protein degradation and turnover in the cardiac muscle of a hibernator model.


Cardiac hypertrophy; Foxo; Hibernation; Ictidomys tridecemlineatus; MAFbx; MuRF1; Muscle remodelling; MyoG; Ubiquitin ligase; Western blotting

Supplemental Content

Full text links

Icon for PeerJ, Inc. Icon for PubMed Central
Loading ...
Support Center