Format

Send to

Choose Destination
PLoS Pathog. 2016 Aug 30;12(8):e1005853. doi: 10.1371/journal.ppat.1005853. eCollection 2016 Aug.

Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation.

Author information

1
Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
2
Diagnostic and Interventional Radiology Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
3
Zoological Institute, Molecular Physiology, Christian-Albrechts University Kiel, Kiel, Germany.

Abstract

We here compared pathogenic (p) and non-pathogenic (np) isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA)-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1-A12) derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1-B12) derived from a pathogenic isolate HM-1:IMSS-B. "Non-pathogenicity" included the induction of small and quickly resolved lesions while "pathogenicity" comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP) activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica.

PMID:
27575775
PMCID:
PMC5004846
DOI:
10.1371/journal.ppat.1005853
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center