Send to

Choose Destination
Front Microbiol. 2016 Aug 5;7:1238. doi: 10.3389/fmicb.2016.01238. eCollection 2016.

Histone Deacetylases and Their Inhibition in Candida Species.

Author information

Laboratoire de Parasitologie-Mycologie, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble AlpesGrenoble, France; Laboratoire TIMC-IMAG-TheREx, UMR 5525 CNRS-UGA, Université Grenoble AlpesGrenoble, France.
Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale U1038, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Biosciences and Biotechnology Institute of Grenoble - Large Scale Biology Laboratory Grenoble, France.


Fungi are generally benign members of the human mucosal flora or live as saprophytes in the environment. However, they can become pathogenic, leading to invasive and life threatening infections in vulnerable patients. These invasive fungal infections are regarded as a major public health problem on a similar scale to tuberculosis or malaria. Current treatment for these infections is based on only four available drug classes. This limited therapeutic arsenal and the emergence of drug-resistant strains are a matter of concern due to the growing number of patients to be treated, and new therapeutic strategies are urgently needed. Adaptation of fungi to drug pressure involves transcriptional regulation, in which chromatin dynamics and histone modifications play a major role. Histone deacetylases (HDACs) remove acetyl groups from histones and actively participate in controlling stress responses. HDAC inhibition has been shown to limit fungal development, virulence, biofilm formation, and dissemination in the infected host, while also improving the efficacy of existing antifungal drugs toward Candida spp. In this article, we review the functional roles of HDACs and the biological effects of HDAC inhibitors on Candida spp., highlighting the correlations between their pathogenic effects in vitro and in vivo. We focus on how HDAC inhibitors could be used to treat invasive candidiasis while also reviewing recent developments in their clinical evaluation.


Candida; HDAC; HDAC inhibitors; acetylation; chromatin

Supplemental Content

Full text links

Icon for Frontiers Media SA Icon for PubMed Central
Loading ...
Support Center