Format

Send to

Choose Destination
Rocz Panstw Zakl Hig. 2016;67(3):247-52.

Migration studies of nickel and chromium from ceramic and glass tableware into food simulants.

Author information

1
National Institute of Public Health - National Institute of Hygiene, Department of Food Safety, Warsaw, Poland.

Abstract

BACKGROUND:

In addition to the release of lead and cadmium from ceramic and glass vessels, (acceptable limits being set by the EU 84/500/EC Directive), other harmful metals can migrate, such as nickel and chromium. Permissible migration limits for these latter metals however have not yet been set in the EU legislation. Both the toxic properties of nickel and chromium and the measures taken by the European Commission Working Group on Food Contact Materials for verifying permissible migration limits for lead, cadmium and other metals from ceramics have acted as drivers for studies on nickel and chromium release from ceramic and glass tableware.

OBJECTIVE:

To investigate the migration of nickel and chromium into food simulants from ceramic and glassware, available on the Polish market, which are intended for coming into contact with food. Potential consumer exposure can thereby be estimated from the release of these elements into food.

MATERIALS AND METHODS:

Tableware consisted of ceramics and glass vessels generally available on the domestic market, with inner surfaces being mainly coloured and with rim decorations. Migration of nickel and chromium studied from the ceramics was carried out in 4% acetic acid (24 ± 0.5 hrs at 22 ± 2°C), whilst that from glassware in 4% acetic acid (24 ± 0.5 hrs at 22 ± 2°C) and 0.5% citric acid (2 ± 0.1 hrs at 70 ± 2°C). The concentrations of metals which had migrated into the test solutions were measured by using flame atomic absorption spectrometry (FAAS). This analytical procedure had been previously validated by measuring nickel and chromium released into food simulants from ceramic and glass tableware where working ranges, detection limits, quantification limits, repeatability, accuracy, mean recovery and uncertainty were established.

RESULTS:

Migration of nickel and chromium was measured from 172 ceramic and 52 and glass vessels samples, with all results being below the limits of quantification (LOQ = 0.02 mg/L), excepting one instance where a 0.04 mg/L concentration of nickel was found. The validated methods for measuring chromium achieved the following parameters; 0.02 to 0.80 mg/L operating range, 0.01 mg/L detection limit, 0.02 mg/L limit of quantification, 6% repeatability, 2.8% accuracy, 102% average recovery and 11% uncertainty. For the nickel method the corresponding parameters were 0.02 to 0.80 mg/L work- ing range, 0.02 mg/L limit of quantification, 0.01 mg/L detection limit, 5% repeatability, 6.5% accuracy, 101% average recovery and 12% uncertainty.

CONCLUSIONS:

The tested ceramics and glassware did not pose a threat to human health regarding migration of nickel and chromium, and thus any potential exposure to these metals released from these products into food will be small. However, due to the toxicity of these metals, the migration of nickel and chromium is still required for articles coming into contact with food, which includes metalware.

KEY WORDS:

ceramic tableware, ceramics, glassware, food contact articles, nickel, chromium leaching, migration.

PMID:
27546321
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for National Institute of Public Health - National Institute of Hygiene (NIPH-NIH), Poland
Loading ...
Support Center